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Abstract

To sustain the nutrient demands of rapid fetal growth, parturition, and milk synthesis, periparturient dairy cows
mobilize adipose tissue fatty acid stores through lipolysis. This process induces an inflammatory response within AT
that is resolved as lactation progresses; however, excessive and protracted lipolysis compounds the risk for
metabolic and inflammatory diseases. The suppression of lipolytic action and inflammation, along with amplification
of adipogenesis and lipogenesis, serve as prospective therapeutic targets for improving the health of periparturient

periparturient dairy cows.

Lipogenesis, Lipolysis

dairy cows. Generally, the activation of cannabinoid receptors by endocannabinoids enhances adipogenesis and
lipogenesis, suppresses lipolysis, and increases appetite in mammals. These biological effects of activating the
endocannabinoid system open the possibility of harnessing the endocannabinoid system through nutritional
intervention in dairy herds as a potential tool to improve dairy cows’ health, although much is still to be revealed in
this context. This review summarizes the current knowledge surrounding the components of the endocannabinoid
system, elaborates on the metabolic effects of its activation, and explores the potential to modulate its activity in
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Introduction

To meet the energy needs of her growing fetus, partur-
ition, and onset of lactation during a dairy cow’s peripar-
turient period, profound metabolic and endocrine
adaptations must occur. It is well established that this
period of high-energy requirement is coupled with a re-
duction in appetite (i.e., dry matter intake [1]), setting
the stage for negative energy balance. To compensate for
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energy deficits, fatty acids (FA) stored as triacylglycerols
(TAG) within adipose tissue’s (AT) cellular unit, the adi-
pocyte, are mobilized (Fig. 1) [2]. Although this meta-
bolic challenge is normal and necessary during the
periparturient period, some cows fail to adapt, which in-
creases their risk for metabolic and inflammatory
diseases.

The AT is composed of adipocytes, fibroblasts, pro-
genitor cells, endothelial cells, and immune cells. White
adipocytes are largely comprised of a single substantial
fat droplet (up to 90% of the cell’s volume), a limited
number of mitochondria, and a compressed nucleus. In
response to increased energy needs, TAG stored in the
lipid droplet are hydrolyzed during lipolysis to release
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Fig. 1 The ECS promotes energy conservation and reduces lipolysis in mature white adipocytes. Lipolysis: CB1 activation on the adipocyte surface
inhibits the activity of the lipolytic enzymes HSL and PLIN, while CB1 activation in autonomous nerves limits the release of catecholamines, the primary
ligand for B-adrenergic receptors. Lipogenesis and adipogenesis: eCBs bind and activate PPARy directly, enhancing transcription of pro-lipogenic and
pro-adipogenic genes: Improved expression of GLUT4 and LPL leads to greater levels of lipogenesis. Mitochondrial biogenesis: CB1 activation
suppresses the activity of the transcriptional coactivator PGC-1q; the principal inducer of mitochondrial biogenesis. Abbreviations: 5" AMP-activated
protein kinase (AMPK), Adenosine triphosphate (ATP), Adenylyl cyclase (AC), Adipose triglyceride lipase (ATGL), Anandamide (AEA), Beta adrenergic
receptor (3-ADR), Calcium (Ca”"), Calciumy/calmodulin-dependent protein kinase kinase 2 (CaMKKR), Cannabinoid receptor 1 (CB1), Chylomicron (CM),
Cyclic adenosine monophosphate (camp), Diacylglycerol lipase (DAG), Endocannabinoid membrane transporter (EMT), Extracellular signal-regulated
kinase (ERK1/2), Factor associated with neutral sphingomyelinase activation (FAN), Fatty acid (FA), Fatty acid transport protein (FATP), G alpha subunit
(Gas), G protein-coupled receptor 55 (GPR55), Gi protein subunit o (Gy), Glucose (GLU), Glucose transporter type 4 (GLUT-4), Guanine nucleotide
binding protein subunit 12/13 (Ga12/13), Guanine nucleotide binding protein subunit g (GaQ), Hormone-sensitive lipase (HSL), Insulin (1), Insulin
receptor (IR), Lipoprotein lipase (LPL), Mammalian target or rapamycin complex 1 (MTORC1), Mitogen-activated extracellular signal-regulated kinase
(MEK), Mitogen-activated protein kinase (MAPK), Monoacylglycerol (MAG), Monoglyceride lipase (MGL), N-Acyltransferase (NAT), NAPE-phospholipase D
(PLD), N-Arachidonyl phosphatidylethanolamine (NAPE), Neutral sphingomyelinase (EMN), Norepinephrine (NE), Perilipin (PLIN), Peroxisome proliferator-
activated receptor gamma (PPARY), Phosphatidylinositol 4,5 bisphosphate (PIP2), Phospholipase C (PLC), Phosphorylation (P), Potassium (K*), PPAR-
gamma coactivator 1a (PGC-1a), Protein kinase A (PKA), Protein kinase B (Akt/PKB), Protein kinase C (PKC), Ras homolog family member A (RHOA),
Retinoid X receptor (RXR), Rho-associated protein kinase (ROCK), Sphingomyelin (EM), Triacylglycerol (TAG), Tuberous sclerosis complex 2 (TSC2),
Vallinoid receptor 1 (TRPV1)
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Fig. 2 The ECS enhances transcriptional machinery of PPARy and lipid accumulation, promoting adipogenesis and lipogenesis in maturing progenitor
cells. Red arrows: inhibitory effect downstream of eCB stimulation. Green arrows: stimulatory effect downstream of eCB stimulation. Abbreviations:
Adenylyl cyclase (AC), adiponectin (ApN), Cannabinoid receptor 1 (CB1), Cyclic adenosine monophosphate response element-binding protein (CREB),
Endocannabinoid (eCB), Extracellular signal-regulated kinase (ERK), Fatty acid binding protein 4 (FABP4), Fatty acid translocase (CD36), Fatty acid
transport protein (FATP), Fibroblast growth factor 1, 2, 10 (FGF1, 2, 10), Free fatty acid (FFA), Gi protein subunit o (Gy), Glucose transporter type 4
(GLUT-4), insulin (I), Insulin receptor (IR), Insulin receptor substrate (IRS), Lipoprotein lipase (LPL), Peroxisome proliferator-activated receptor gamma
(PPARY), Retinoid X receptor (RXR), Tumor necrosis factor alpha (TNFa), Vascular endothelial growth factor D (VEGF-D)

ICB1 induction promotes the
conservation of energy by
enhancing lipogenesis and
suppressing lipolysis as

well as mitochondrial

adipocytes.

FA and glycerol. In times of excess energy, the AT ex-
pands by enlarging the size of adipocytes’ lipid droplets
(lipogenesis), or by increasing the number of adipocytes
(adipogenesis) (as displayed in Figs. 1 and 2). In addition
to the provision of energy, AT serves as an endocrine
organ and secretes several factors associated with the
modulation of energy metabolism, including adipokines
(e.g., adiponectin, leptin, resistin) and, as recently de-
scribed, endocannabinoids (eCBs) [3]. Research over the
past two decades highlights the endocannabinoid system
(ECS) as a potent coordinator of AT function. The ECS
consists of eCBs, cannabinoid receptors, and enzymes
involved in the synthesis and degradation of eCBs. Func-
tions of the ECS include regulation of physical exertion,
immunomodulation, modification of cellular prolifera-
tion, and preservation of energy-storing reservoirs [4].
The ECS, when active, favors the accumulation of fat
mass through both central and peripheral pathways [5].
Within AT, ECS activation promotes adipogenesis and
lipogenesis and impedes lipolytic activity (Figs. 1 and 2).
In addition to these functions, the ECS enhances appe-
tite in mammals through paracrine and endocrine sig-
nals as well as neural pathways. The role of ECS on
modulating these important metabolic processes empha-
sizes the potential of the ECS to reduce the intensity and

duration of negative energy balance in periparturient
COWS.

The adipose tissue endocannabinoid system
Endocannabinoids

eCBs consist of lipid intermediaries, including amides,
esters, and ethers of polyunsaturated FAs [6]. eCBs
possess structural similarities to exogenous cannabi-
noids, such as a phenolic hydroxyl at the carbon C-1
and an alkyl side chain at the carbon C-3 [7]. Both
eCBs and exogenous CBs (such as (-)-trans-A°-tetra-
hydrocannabinol, THC) bind to CB receptors in
mammalian tissues [8].

Synthesized rapidly in response to an increase in
intracellular calcium levels, metabolic stress, or cellu-
lar damage, eCBs are derived from dietary FAs [9].
These ligands bind and activate the canonical CB re-
ceptors type 1 and 2 (CB1 and CB2, respectively), the
vallinoid receptor TRPV1, G protein-coupled receptor
55 (GPR55), and members of the peroxisome
proliferator-activated receptor (PPAR) family [10].
The two most abundant (and potent) eCBs are the
arachidonic acid-containing AEA (anandamide, N-ara-
chidonoylethanolamide) and 2-AG (2-arachidonygly-
cerol) [11]. Lesser-known eCB molecules include
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palmitoylethanolamine (PEA) and oleoylethanolamine
(OEA). These compounds have not been studied in
ruminants and, therefore, are beyond the scope of this
review (readers are referred to a detailed literature re-
vision elsewhere [12]).

In dairy cows, plasma 2-AG concentrations increase
from 1.5 + 0.94 nmol/mL during the dry period to 3.0 +
0.94 nmol/mL one month after parturition [13]. In AT
from cows exhibiting high postpartum weight loss (> 8%
during the first month postpartum), AEA and 2-AQG levels
double from 0.94 + 0.23 fmol/mg and 0.56 + 0.10 nmol/
mg at — 14 days relative to parturition, to 2.18 + 0.23 fmol/
mg and 0.97 + 0.10 nmol/mg 4 days after calving [14]. In
contrast, cows exhibiting low weight loss do not show dra-
matic increases in plasma and AT AEA or 2-AG levels
when compared to high weight loss groups [13, 14]. These
changes in plasma and AT eCB content suggest that the
ECS may be activated to a greater extent in cows experien-
cing greater levels of lipolysis. It is presently unknown if
high eCB content is an anti-lipolytic response of the AT to
reduce TAG breakdown or if it is a consequence of the
high availability of eCB precursors driven by lipolysis.

Biosynthesis of eCBs

AEA

There are three proposed biosynthetic pathways for
AEA (illustrated in Fig. 3a): The first pathway begins
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with the N-acylation of the phospholipid membrane pre-
cursor phosphatidylethanolamine (PE) by the Ca**-
dependent N-acyltransferase (NA) to produce N-arachi-
donylphosphatidylethanolamine (NAPE) [15, 16]. Next
Ca**-activated enzyme N-arachidonylphosphatidyletha-
nolamine-specific phospholipase D (NAPE-PLD) acts on
NADE yielding AEA. The second pathway includes the
hydrolysis of NAPE (after N-acylation by NA) by type-C
phospholipase (PLC) to phosphoanandamide. This is
followed by dephosphorylation by Src homology 2
domain-containing inositol-5-phosphatase 1 to produce
AEA [17]. In pathway three, repeated hydrolytic cleavage
of NAPE’s acyl groups by the serine hydrolase abhydro-
lase domain containing 4 to form lyso-NAPE and then
glycerophospho-N-AEA. This product is then hydro-
lyzed by the metal-dependent glycerophosphodiester
phosphodiesterase 1 to AEA [18].

2-AG
2-AG is the hydrolyzed product of 2-arachidonoyl-
containing  phospholipids  (mainly arachidonoyl-

containing phosphatidyl inositol bis-phosphate, PIP2).
There are three main routes proposed for the intra-
cellular biosynthesis of 2-AG (Fig. 3b): 1) diacylglyc-
erol (DAG) is synthesized from PIP2 and then
hydrolyzed by the enzyme diacylglycerol lipase
(DAGL). 2) 2-arachidonoyl-lysophosphatidic acid is

AEA Synthesis

PTPN22

NAPE-PLD

Intermediate

[ erme

<2_A PP> 2-AG Synthesis

Fig. 3 Proposed biosynthetic pathways for AEA (a) and 2-AG (b) formation. Abbreviations: Arachidonic acid (AA), Arachidonoyl ethanolamine
(AEA), Ethanolamine (EA), Fatty acid amide hydrolase (FAAH), Glycerophosphoanandamide (GP-N-AEA), Lyso-NAPE, abhydrolase domain-

containing 4 (ABHD4), N-acyltransferase (NAT), NAPE-phospholipase D (NAPE-PLD), N-arachidonylphosphatidylethanolamine (NAPE), Phosphatidyl
ethanolamine (PE), Phosphoanandamide (P-AEA), Phosphodiesterase (PDE), Phospholipase C (PLC), Protein tyrosine phosphatase (PTPN22), Src
Homology 2 domain-containing inositol-5-phosphatase 1 (SH2DI5P1). 2-AG lysophosphatidyl inositol (2-AG-LPI), 2-arachidonoyl glycerol (2-AG), 2-
arachidonoyl phospholipids (2-A PPL), 2-lysophosphatidic acid phosphatase (2-LPAP), Adipose triglyceride lipase (ATGL), Diacylglycerol (DAG), DAG
lipase (DAGL), Hormone-sensitive lipase (HSL), Lyso-PLC, 2-AG-lysophosphatidic acid (2-AG-LPA), N-acyltransferase (NAT), Phosphatidyl inositol (Pl),
Phosphatidyl inositol bisphosphate 2 (PIP2), Phospholipase 1 (PLA1), PIP2 phosphatase (PIP2P), Triacylglycerol (TAG)
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hydrolyzed by 2-lysophosphatidic acid phosphatase
into the Dbioactive eCB. 3) 2-arachidonoyl-
lysophosphatidylinositosol, a derivative of PIP2, is syn-
thesized into 2-AG by lyso-PLC [19].

Degradation of eCBs

Non-oxidative enzymatic degradation of eCBs

The two primary enzymes that catabolize eCBs are the
serine hydrolase FAAH and monoacylglycerol lipase
(MAGL) [20]. FAAH, a membrane-bound enzyme, fa-
vors AEA as a substrate but hydrolyzes other long-chain
amides and amines (detailed description in [21, 22]. The
hydrolysis of AEA, OEA, and PEA by FAAH yields
ethanolamine and AA, oleic acid, and palmitic acid,
respectively [23]. The expression and activity of these
non-oxidative pathways in AT are affected by anatomical
location and degree of adiposity. Visceral AT exhibits a
higher expression of these eCB catabolic pathways com-
pared to subcutaneous depots [24]. In humans, levels of
visceral FAAH are lower in obese humans compared to
lean subjects [25], suggesting that eCB degradation by
FAAH may be inhibited in larger adipocytes.

MAGL hydrolyzes 2-AG and is likely to be the primary
route of degradation for 2-AG into AA and glycerol
[26]. Unlike FAAH, which is expressed ubiquitously,
MAGL is expressed predominantly in AT [27]. Notably,
genetic or pharmacological blockade of MAGL in mice
leads to elevated levels of 2-AG in the brain and en-
hances the sensitivity of CB1 to eCBs [20], unlike FAAH
blockade, which causes CB1 desensitization [28].

MAGL appears to be a major degradative enzyme of
eCBs in periparturient dairy cows. We demonstrated
that MAGL protein abundance in AT is lower in cows
experiencing high weight loss compared to those with
minimal body weight changes [14]. In the same study,
FAAH concentrations remained stable across groups
throughout the sampling period [14]. However, MAGL
protein abundance was higher in insulin-resistant vs.
insulin-sensitive AT from postpartum cows [29]. More
information on the role of MAGL in AT lipolysis and
ECS activation in dairy cows is required to explore the
possibility of using this enzyme as a pharmacological tar-
get for intervention.

Additional enzymes known to degrade eCBs include
the serine hydrolases o/p hydrolase 6 (ABHD®6), and o/
hydrolase 12 (ABHD12), which degrade 2-AG in the
brain [30], and N-acylethanolamine-hydrolyzing acid
amidase (NAAA), which hydrolyzes N-acylethanola-
mines under acidic conditions [31]. In dairy cows, the
expression of genes encoding for ABHD12 and NAAA
was reported in the reproductive tract but not in AT.
Periparturient dairy cows with subclinical endometritis
had a reduced endometrial mRNA expression of NAAA
compared to healthy controls [32]. ABHD6 and ABHDI12
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levels are expressed differently during the follicular de-
velopment of oocytes [33]; however, the role that these
enzymes play in the ECS in AT remains to be explored
in dairy cows.

Oxidative degradation of eCBs

Enzymes such as cyclooxygenases (COX), lipoxy-
genases (LOX), and cytochromes P450 (CYP450) are
capable of oxidizing eCBs (reviewed in [34]). These
enzymes are part of the inflammatory process as a
source of inflammatory lipid mediators, also known as
oxylipids. These products are oxidized FAs derived
from phospholipid membranes or triglycerides con-
tained in lipid droplets that regulate the different
stages of inflammation from onset to resolution [35].
In AT from dairy cows, we demonstrated the expres-
sion and functionality of COX, LOX, and P450s [36].
The full extent to which these oxidative enzymes act
on eCBs in ruminant AT remains unknown. However,
pharmacological blockade of these eCB-oxidizing
pathways in dairy cows’ AT may be beneficial during
the periparturient period as eCBs may promote lipo-
genesis and thus counteract lipolysis. Also, there are
reports of eCBs acting as suppressors of AT inflam-
mation [37] and inhibitors of pain sensation [38];
therefore, inhibiting eCB-degrading enzymes could
offer some advantages by reducing AT inflammation.
Nevertheless, recent studies indicate that when eCB
precursors are fed at high levels in mice and salmon,
inflammatory responses within AT are observed along
with enhanced levels of eCBs [39]. These conflicting
findings highlight the complexity of the ECS in AT
and emphasize the need for further research to eluci-
date the role of eCB in AT inflammatory responses of
dairy cattle.

Cellular receptors of eCBs

CB1

The two primary receptors of the ECS are the G
protein-coupled receptors (GCPRs) CB1 and CB2,
encoded by the CNRI and CNR2 genes, respectively.
CB1 belongs to the Class A GCPRs, known to activate
inward-propelling potassium channels and inhibit cal-
cium channels [40]. In humans and rodents, CB1 recep-
tors are expressed at the highest levels in neural tissue,
and lower levels of expression are observed in AT, liver,
skeletal muscle, and peripheral organs [41]. In adipo-
cytes, CB1 receptor stimulation increases the uptake of
glucose and lipogenesis while inhibiting lipolysis [42].
CB1 conducts its response via G protein G;,,-mediated
reduction in adenylate cyclase action, suppressing the
activation of hormone-sensitive lipase (HSL) through the
halt in cyclic adenosine monophosphate (cAMP) pro-
duction [43].
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cB2

CB2 is found primarily in microvascular endothelial cells
and on the surface of immune cells, most commonly
those derived from the hematopoietic lineage [44]. CB2
is known to exert anti-inflammatory effects in peripheral
tissues [45], and only low levels of CB2 expression are
detected in monogastric AT [46]. In humans, CB2 ex-
pression has been shown to decrease as pre-adipocytes
mature into adipocytes in vitro [24]. This mRNA expres-
sion pattern suggests that within AT, CB2 content is
higher in preadipocytes, macrophages, and vascular cells
rather than in mature adipocytes [24].

GPR55

Belonging to the rhodopsin-like (Class A) family of
GPCRs, GPR55 expression is detected in brain and
neural tissues, immune cells, spleen, blood vessels, small
intestine, endometrium, and AT [47]. This receptor acti-
vates PLC, which stimulates inward-propelling Ca®*
channels. PLC activation catalyzes the cleavage of PIP2
to inositol triphosphate and DAG (diacylglycerol) [48];
GPR55 activation also promotes insulin secretion in pan-
creatic B-cells [49], and its suppression is associated with
adiposity [50] and impaired insulin signaling in AT [47].

TRPV1

TRPV1 is a non-selective ion channel expressed most
prominently in neural tissues. This receptor is also
found in a wide range of tissues, including blood ves-
sels, the gastrointestinal tract, immune cells, endothe-
lial cells lining the urinary tract, and adipocytes [51].
TRPV1’s direct role in AT metabolism lies in its abil-
ity to increase intracellular calcium levels, which acti-
vates mitochondrial biogenesis through enhanced 5’
adenosine monophosphate-activated protein kinase
(AMPK) activity [52] and by peroxisome proliferator-
activated receptor gamma coactivator 1 (PGC-la) ac-
tivation of uncoupling protein 1 (UCP-1) by route of
sirtuin-1 (SIRT-1) [53]. The eCB AEA is known to
activate the TRPV1 receptor and B-lymphocyte-
derived (Bl cell-derived) leukotriene B4, which regu-
lates the local inflammatory response in AT as a
TRPV1 agonist [54].

CB receptors in AT of dairy cows

AT expression of CNRI (encoding CB1) and CNR2
(encoding CB2) increase after calving in dairy cows
exhibiting high rates of lipolysis [14]. Dirandeh et al.
[55] demonstrated that higher gene expression of
CNR2, NAPEPLD, and FAAH in AT coincides with
enhanced expression of pro-inflammatory genes
(TNF-a, IL-6, IL-1B) at 21 and 42 days postpartum in
cows exhibiting intense AT lipolysis. Also, CB recep-
tor expression is affected during inflammatory

(2021) 12:21

Page 6 of 13

diseases, as shown in cows with endometritis, where
endometrial CNR2 transcription is amplified [32].
These expression patterns indicate a possible link be-
tween ECS and AT inflammatory responses; however,
further research is required to understand the role of
ECS in adipose inflammation in dairy cows, specific-
ally during the periparturient period when AT under-
goes dramatic lipolysis and remodeling [56].

The ECS modulates adipogenesis and lipid mobilization in
AT

Alteration of adipogenesis via the ECS

Adipogenesis defines the determination and terminal
differentiation of adipose progenitor cells into adipo-
cytes. De novo adipogenesis enhances the capacity of
AT for storing energy when present adipocytes reach
their maximum volume during positive energy balance
(ie., hyperplasia) [57]. Since adipogenesis reduces lipo-
toxicity, promoting the differentiation of new adipocytes
may be effective in reducing the deleterious effects of ex-
cessive lipolysis in periparturient cows.

PPARy is the master regulator of adipogenesis, al-
though other PPARs — «, /8 — contribute as well [58].
Three variants of PPARy have been identified; the most
prominent isoform is PPARYy, as it is expressed primarily
in AT and is heavily involved in energy homeostasis
[42]. Upon activation by eCBs (or other ligands), the
PPAR family binds to the retinoid X receptor (RXR) to
form heterodimers. This complex then binds to DNA re-
sponse elements, triggering the expression of adipogenic
and lipogenic gene networks (Figs. 1 and 2) [59].

During the differentiation of adipocyte progenitor
cells, expression of CB1, NAPE-PLD, and DAGL in-
crease, while expression of the eCB-degradative enzymes
FAAH, MAGL, and NAAA decrease [60]. CB1 and CB2
are present in adipocyte progenitor cells [61] and, as il-
lustrated in Fig. 2, CB1 stimulation enhances the cap-
acity of adipose stem cells to commit to preadipocytes
through downstream activation of the cAMP response
element-binding protein (CREB) and PPARy, [62]. Al-
though CB1 stimulation decreases intracellular levels of
cAMP [63], phosphorylation of CREB may occur
through Gy, activation of ERK [64]. CREB binds to adi-
pogenic promoters such as FABP, FAS, and C/EBP.
This enhances the adipogenic commitment cascade in
progenitor cells. PPARy,’s adipogenic activity, on the
other hand, is directly improved by the binding of eCBs
and CREB [65].

When murine 3 T3-F442A preadipocytes are treated
with the CB1 stimulant HU210, these cells show en-
hanced expression of PPARY, and adiponectin and in-
crease the number of lipid droplets formed [66]. In
human preadipocytes, CB1 stimulation promotes glu-
cose uptake through increased intracellular Ca**
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mobilization from the endoplasmic reticulum and
insulin-dependent  phosphatidylinositol 3  kinase
(PI3K)/AKT (Protein Kinase B) pathway activation
(see Fig. 1) [24]. CB1 inhibition with the selective
agent Rimonabant (SR141716A) in co-incubation with
CB1 activators was shown to mitigate adipogenesis
via inhibition of p42/44 mitogen-activated protein
kinase (MAPK) activity. In the same type of cells, adi-
ponectin levels and glyceraldehyde-3-phosphate de-
hydrogenase activity increases during exposure to CB1
agonists, expounding the significance of CB1 stimula-
tion in both adipogenesis and lipogenesis [67].

To our knowledge, there are no studies evaluating AT
adipogenic responses during ECS activation in dairy
cows. However, in periparturient cows exhibiting moder-
ate to high body weight loss, the gene expression of
NAPEPLD and PPARy is upregulated and positively as-
sociated [55], suggesting a possible physiological re-
sponse as AEA synthesized by NAPE-PLD is capable of
activating PPARYy, enhancing adipogenesis directly.

Lipogenesis is amplified by ECS activation

In ruminants, de novo lipogenesis is the biological
process by which neutral lipids and phospholipids (i.e.,
TAG, phospholipids, cholesterol, or sphingolipids) are
biosynthesized from dietary volatile FAs within the cyto-
plasm of adipocytes or hepatocytes. A key stimulator of
lipogenesis is insulin. This pancreatic peptide promotes
glucose transporter type 4 (GLUT-4) and lipoprotein lip-
ase (LPL) activity. In monogastric animals, upon ligand
binding to CB1, lipogenesis is enhanced by three mecha-
nisms: 1) the promotion of LPL activity; 2) the inhibition
of AMPK; and 3) the augmentation of insulin-dependent
glucose uptake. LPL hydrolyzes TAG found in circulat-
ing plasma lipoproteins and thus increases FA available
for lipogenesis. In preadipocytes and adipocytes, LPL
transcription and activity are heavily regulated by insu-
lin. Glucose, on the other hand, glycosylates LPL
intended for secretion from adipocytes to capture TAG
and enhances LPL synthesis within adipocytes [68]. eCB
binding to CB1 increases expression and activity of LPL
[69]; however, the mechanism by which this occurs is
unknown.

CB1 activation triggers Gj,,-dependent signaling path-
ways [63], enhancing the excretion of intracellular cal-
cium into the extracellular matrix. This intracellular
Ca** reduction hinders AMPK action via Ca>*/calmodu-
lin-dependent protein kinase kinase B (CaMKKp) [70].
AMPK, a serine/threonine protein kinase, regulates en-
ergy homeostasis by enriching pathways that generate
ATP and diminishing energy-consuming pathways [71].
AMPK decreases FA synthesis by reducing ACC activity
and, subsequently, malonyl-CoA availability. AMPK
regulation occurs through mechanisms directly related
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to hindered cAMP production (G;/,-dependent signaling
pathways triggered by CB1 activation, for example), re-
ductions of intracellular calcium, and elevations of the
concentrations of ATP. G/, pathway activation also hin-
ders the action of adenylate cyclase, most likely as a
means to conserve ATP [63].

Intracellular glucose levels increase with CB1 activa-
tion [24]. Downstream of CB1, PI3K/AKT pathway
stimulation promotes the translocation of glucose trans-
porters to the cell surface from the cytoplasmic vesicles.
This explains the increase in insulin-dependent glucose
transport into the cell that has been stimulated with
eCBs [72]. Like CB1, GPR55 is a positive regulator of in-
sulin action and enhances levels of intracellular glucose
in an insulin-dependent manner [47].

In dairy cows with intense body weight loss, AT CNR1
expression is greater than in those maintaining their
body condition, suggesting that the eCB receptor CB1
activation is a response to increased free FA content in
AT [14]. However, more information is required on the
specific mechanisms that govern the ECS in periparturi-
ent cows in order to fully understand its involvement in
the regulation of lipogenesis.

The ECS suppresses lipolysis

Lipolysis occurs during negative energy balance when
stored TAG are broken down into free FAs and glycerol.
Stimulation of TAG catabolism occurs upon binding of
hormones (glucagon, growth hormone) and bioactive
amines (adrenaline, norepinephrine) to either pB-
adrenergic or glucagon receptors, triggering the c-AMP-
dependent lipolytic cascade via protein kinase A (PKA)
phosphorylation of HSL and perilipin [73]. Within the
adipocyte, TAG are hydrolyzed by adipose triglyceride
lipase (ATGL) into diacylglycerol (DAG). From this
point, DAG is hydrolyzed to monoacylglycerol (MAG)
by HSL. Once broken down into free FAs and glycerol
by MAGL, FA transport proteins (FAT/CD36, FATPI,
FABP) can direct FAs to the mitochondria for oxidation
or the RER where FA can be re-esterified into TAG or
released into the vasculature surrounding the adipocyte
for transport (extensively reviewed in [74]). Free FAs are
then used as energy substrates primarily by cardiac,
renal, or muscular tissues, but may also be utilized by
most organs (exceptions being erythrocytes and the
renal medulla).

The anti-lipolytic effect of CB1 stimulation in adipo-
cytes occurs through G, inhibition of cAMP produc-
tion, which limits the downstream phosphorylation of
HSL and perilipin [75]. Transcriptional effects down-
stream of CB1 activation in AT include the suppression
of lipolysis-associated enzymes (carnitine-acyl-CoA
transferase, carnitine palmitoyltransferase 2, and croto-
nase), along with downregulation of P-adrenergic and
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growth hormone receptor expression [76]. CB1 stimula-
tion in AT sympathetic nerves suppresses catecholamine
release, subsequently downregulating HSL activity
through the decrease in cAMP produced by AC, which
is no longer activated by [(-adrenergic receptors [77]
(Figs. 1 and 2).

Homeorhetic conditions in periparturient dairy cows
drastically increase lipolysis around the time of partur-
ition [78], yet excessive lipolysis leads to high disease in-
cidence, reduced milk yield, and impaired reproductive
performance. Considering the anti-lipolytic effects that
follow CB1 stimulation and their potential benefits, the
role of this receptor and the ECS should be further ex-
plored in periparturient cows.

The ECS modulates mitochondrial function in AT

Despite the limited number and relative mass of mito-
chondria in white adipocytes, their role in AT homeosta-
sis and remodeling is significant. Based on
microenvironmental signals, mitochondria oxidize FAs
and carbohydrates in the tricarboxylic acid cycle, and
the subsequent electron transport chain provides ATP
to the cell [79]. In addition to the provision of energy,
mitochondria also play a key role in the differentiation
of preadipocytes into adipocytes. In fact, mitochondrial
FA metabolism and production of reactive oxygen spe-
cies (ROS) are necessary to initiate adipogenesis [80].
This may be attributed to ROS’ role in insulin signaling
or its ability to enhance PPARY’s transcriptional machin-
ery [81].

In line with its lipogenic effects, CB1 stimulation has
been shown to limit mitochondrial biogenesis and in-
crease mitophagy in AT (as illustrated in Figs. 1 and 2).
These effects may reduce mitochondrial oxidaton of FA
and possibly redirect these energy molecules to reesteri-
fication into triglycerides in the endoplasmic reticulum.
Both genetic (CNRI knockout mice) and pharmaco-
logical (SR141716-treated mice) blockade of the CB1 re-
ceptor increased eNOS-dependent (endothelial nitric
oxide synthase) mitochondrial biogenesis and AMPK ac-
tivity in white adipocytes [82]. In another study, CB1
stimulation was associated with a decrease in PGC-1la
expression, which corresponded to a direct decrease in
mitochondrial mass and function [83].

Other molecules associated with suppressed mito-
chondrial function are ceramides [84]. These bioactive
lipids are produced from a FA and sphingosine (de novo
synthesis) or by the hydrolysis of sphingomyelin [85]. In
monogastric AT, ceramides are known regulators of in-
sulin signaling, inflammation, and intracellular metabol-
ism [86]. Both CB1 and CB2 activation cause increases
in intracellular ceramide production, likely a result of
improved de novo ceramide synthesis through upregula-
tion of the MAPKs extracellular signal-regulated kinase
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(ERK1/2), P38MAPK, and/or c-Jun N-terminal kinases
(JNK) [87]. Heightened intracellular ceramide levels are
associated with changes in mitochondrial membrane po-
tential, the formation of new ion channels [88], and al-
terations in trifunctional proteins which are known to
catalyze chain shortening reactions in mitochondrial FA
-oxidation [89].

Increased plasma ceramide in periparturient cows is
positively associated with plasma acylcarnitine accretion,
suggesting that FAs are partitioned away from pB-
oxidation in the mitochondria and toward the synthesis
of sphingolipids [90]. The role of ceramide and sphingo-
lipid biology in the metabolism of dairy cows is extensive
(reviewed in [91]); however, it is currently unknown
whether ceramides activate CB1 or CB2 in AT of dairy
cows, and this warrants further investigation.

The ECS modulates inflammatory responses
The effects of ECS activation on inflammatory responses
are complex and vary depending on the tissue, eCBs,
and the type of receptor. For example, AEA has anti-
inflammatory effects, including the inhibition of chemo-
attractant cytokines secretion, especially those released
at the early stages of the inflammatory process such as
IL-6, IL-8, and MCP-1, along with completely blocking
lipopolysaccharide (LPS)-triggered activation of NEF-
kappa B pathway in periodontal tissues [92]. As for the
receptors, activation of the CB1 suppresses the prolifera-
tion of cells of the adaptive immune system, especially
T-cells [93]. Blocking CB1 activity has been shown to in-
crease LPS-mediated inflammation in the gut [94]. CB2
activation in immune cells inhibits the release of pro-
inflammatory cytokines [95] and therefore prevents
leukocyte migration and adhesion in the brain [96].
Nevertheless, there are reports indicating that inhibition
of ECS receptor activity causes inflammatory responses.
Blocking of CB1 with Rimonabant in the presence of
LPS decreases expression and secretion of the pro-
inflammatory cytokines TNFa and IL-6 in adipocytes
[97]. Therefore, more research is required to fully eluci-
date the effects of eCBs and the activation of CB1 and
CB2 receptors on inflammation in different tissue types.
In dairy cows, there are reports indicating that ECS ac-
tivation may be indicative of subclinical inflammatory
diseases [32, 98]. For example, periparturient cows with
subclinical endometritis had reduced expression (2- to
4- fold) of markers of eCB degradation (NAAA, FAAH)
compared to healthy controls. At the same time, these
animals had higher expression (2.5- to 4-fold) of compo-
nents of the eCB synthesis pathways, and ECS markers
(NAPEPLD, CNR2) compared to controls [32]. These
findings indicate that the ECS is activated to a greater
extent in cows experiencing uterine inflammation post-
calving [14]. Remarkably, ECS activity in the
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reproductive tract appears to be modified, at least at the
gene expression level, by nutritional interventions, as re-
ported by Abolghasemi et al. [99]. In their study, conju-
gated linoleic acid supplementation (75 g/d) from days
21 to 42 after parturition reduced the expression of uter-
ine CNR2 and NAPEPLD .

The interactions between ECS activation and inflam-
matory responses in AT of periparturient dairy cows is
poorly characterized. However, we demonstrated that
AT inflammation is triggered by high lipolysis rates
postpartum, and this alters the activity of some compo-
nents of the ECS system [14, 36]. Cows with high lipoly-
sis have enhanced expression of components of the eCB
biosynthetic pathways and ECS receptors, including
NAPEPLD, CNR1, and CNR2 compared to periparturi-
ent cows with low lipolysis [14]. AT inflammation and
lipolysis postpartum also affects the expression of eCBs
degrading enzymes. Expression of ALOX5 and ALOXI1S
(encoding for 5- and 15-lipoxygenase, respectively),
which are capable of metabolizing eCBs and subse-
quently produce oxylipid mediators of inflammation,
varies throughout the periparturient period and also be-
tween cows displaying high or low levels of body weight
loss [36]. AT ALOXI5 expression declines in the
postpartum period, whereas ALOXS increases post-
calving, and its transcription is enhanced in cows exhi-
biting higher levels of lipolysis [36]. Currently, the effect
of ECS activation on bovine AT immune cells is un-
known. In rodents, eCBs such as palmitoylethanolamide
can polarize AT macrophages to the M2 anti-
inflammatory phenotype when administered parenterally
(SC, 30 mg/kg) for five weeks [100]. Considering the
two-fold elevation observed in eCB levels during the
postpartum period in cows with high weight loss [14],
the altered gene expression of eCB oxidative enzymes
between groups of cows exhibiting high and low levels
of lipolysis [36], and the possible effect of eCBs on AT
macrophage phenotype, the relationship between the
ECS and AT inflammation should be further explored.

The ECS regulates appetite and nutrient uptake

CB1 activation stimulates appetite

In mammals, CB1 increases food intake by activating the
binding of orexigenic peptides and inhibiting the attach-
ment of anorexigenic proteins to hypothalamic neurons
[101]. Leptin, a key hormone in this metabolic equation,
is released from AT after feeding and binds to the hypo-
thalamus where it induces the release of anorexigenic
peptides (extensively reviewed in [102]). Hypothalamic
eCB levels are negatively controlled by leptin [103, 104],
and disruption of leptin signaling leads to an increase in
eCB expression in neural tissues. Hypothalamic levels of
NAPE (an AEA precursor) increases after treatment with
leptin in rats [104]. This pattern of NAPE expression
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identifies leptin as a potential suppressor of NAPE-PLD;
this is reasonable considering it inhibits the mobilization
of intracellular calcium necessary for the activation of
NAPE-PLD [105]. In addition, eCB levels increase in the
limbic forebrain of fasted rats and return to basal levels
after feeding [106], further pointing toward leptin as a
potential regulator of circulating eCB levels.

Peripheral CB1 activation may also exhibit an inhibi-
tory role over leptin in neural tissue [107]. Studies by
Tam et al. using a peripherally-restricted CB1 inverse
agonist in a diet-induced obese mouse model reversed
hyperleptinemia and leptin resistance [108, 109] and im-
proved anorexic melanocortin signaling in the hypothal-
amic arcuate nucleus [110]. These findings highlight the
capabilities of CB1 to reduce leptin sensitivity and sati-
ation signaling pathways in the hypothalamus.

The role of the ECS on the hedonic response to eating
has recently been described in detail [111]. Taste is of
special interest as this sensation can be altered by endo-
crine and paracrine signaling [112]. In lean mice, the
sweet taste is suppressed by leptin [113]; however, eCBs
block this effect and enhance sweet taste sensation
[114]. The capacity of eCBs to enhance sensitivity to
sweet taste at physiological levels was described in
humans, and, remarkably, taste response to sweet stimu-
lation increased by more than 120% [115]. This was also
observed in mice with a dose-dependent response [116].
In the same study, CB1 knockout or pharmacological in-
hibition obliterated the response to sweet tastes, suggest-
ing that CB1 modulates the effects of this sensation.
Furthermore, Rimonabant decreases food intake in mice,
yet CB2-selective inhibitor SR144528 has no direct im-
pact on appetite. Based on these findings, the involve-
ment of CB2 on the modulation of appetite may not be
as extensive as that of CB1 [117].

In dairy cows, reduced intake of feed promotes
mobilization of body fat, which leads to increased hep-
atic deposition of TAG and synthesis of ketones. Al-
though conjecture, by reducing ruminant AT lipolysis in
a CB1-dependent manner, satiety signaling may be sup-
pressed through the limitation of FA oxidation in the
liver, subsequently increasing dry matter intake and im-
proving periparturient metabolic health. For these rea-
sons, the relationship between CB1 activation in AT and
feed intake in dairy cows should be explored in the
future.

NAPE-PLD, the intestinal barrier, and nutrient absorption

Recent studies determined that AT NAPE-PLD levels
improve the gut epithelial barrier and microbial func-
tion, which in turn, enhanced AT energy storage func-
tion in a cyclical manner [118]. The intestinal
epithelium regulates metabolic function through its role
in the uptake of nutrients, secretion of hormones, and
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production of eCBs [119]. In monogastrics, short-term
dietary FA contact in the stomach induces jejunal AEA
mobilization and movement of FAs into the duodenum,
which leads to enhanced synthesis of OEA [120]. In
addition to the enrichment of eCB synthesis, activation
of the gut ECS also improves adipogenesis in AT [121].
In monogastric species, the intestinal ECS reduces LPS
mobilization, barrier disruption, gut inflammation, and
dysbiosis of gut microbes [121].

In dairy cows, LPS released from the rumen epithe-
lium is translocated across the intestinal barrier and into
the bloodstream. Increases in plasma concentrations of
endotoxin lead to profound metabolic changes and sys-
temic inflammation [122]. In the same study, Ametaj
et al. discovered that blood glucose and non-esterified
FA levels correspond to circulating LPS [122], and such
increases are accompanied by depressed dry matter in-
take in dairy cows [123]. Interestingly, local CB1 activa-
tion limits LPS absorption in the gut, which may
improve appetite and limit inflammation in dairy cows.

Conclusion

The past two decades of research have created a solid
foundation in eCB biology with regards to the effects of
ECS on the modulation of metabolic, behavioral, neuro-
logical, and immune functions in mammals. Targeting the
systemic and adipose ECS shows promise to enhance peri-
parturient period health through possibly promoting ap-
petite, adipocyte proliferation, lipid accumulation, and
suppressing lipolysis and AT inflammation. It is also im-
portant to determine the potential impact of ECS activity
on fetal growth and neonatal health. Much work is still re-
quired to determine the biological significance of eCBs
and ECS mechanisms of function in ruminant species but
this research will help reducing periparturient disease inci-
dence and enhace metabolic function in dairy cows.
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