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Abstract

throughout pregnancy.

ability to establish pregnancy.

Background: The greatest impact on profitability of a commercial beef operation is reproduction. However, in beef
heifers, little is known about the vaginal and fecal microbiota with respect to their relationship with fertility. To this
end, we followed heifers through gestation to examine the dynamics of vaginal and fecal microbial composition

Results: Heifers were exposed to an estrus synchronization protocol, observed over a 12-day period, artificially
inseminated 12 h to 18 h after observed estrus, and subsequently exposed to bulls for a 50-day breeding season.
Vaginal samples were taken at pre-breeding (n=72), during the first (n=72), and second trimester (n = 72) for all
individuals, and third trimester for individuals with confirmed pregnancies (n = 56). Fecal samples were taken at pre-
breeding (n=32) and during the first trimester (n = 32), including bred and open individuals. Next generation
sequencing of the V4 region of the16S rRNA gene via the lllumina MiSeq platform was applied to all samples.
Shannon indices and the number of observed bacterial features were the same in fecal samples. However,
significant differences in vaginal microbiome diversity between gestation stages were observed. No differences in
beta-diversity were detected in vaginal or fecal samples regarding pregnancy status, but such differences were seen
with fecal microbiome over time. Random Forest was developed to identify predictors of pregnancy status in
vaginal (e.g., Histophilus, Clostridiaceae, Campylobacter) and fecal (e.g., Bacteroidales, Dorea) samples.

Conclusions: Our study shows that bovine vaginal and fecal microbiome could be used as biomarkers of bovine
reproduction. Further experiments are needed to validate these biomarkers and to examine their roles in a female's
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Introduction

Reproduction has the greatest impact on profitability in
commercial beef operations [1]. The losses in dairy and
beef cattle due to reproductive failure results in a $1 bil-
lion annual loss in income for the cattle industry and
makes reproductive failure six times more costly than
the associated with respiratory disease [2]. Incorporating
reproductive technologies, management strategies in-
volving genetic selection and taking into account nutri-
tion and seasonality can positively impact reproductive
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efficiency in a beef herd [3-5]. However, the less ex-
plored vaginal microbiota of the female bovine may also
provide insights that help explain reproductive failure
and success.

The extensively characterized human vaginal micro-
biome is divided into 5 community state types (CSTs)
based on the dominating species of bacteria [6—8]. Four
of these CSTs are dominated by the hydrogen peroxide
and lactic acid producing genus of Lactobacillus species
[9, 10]. In the fifth CST, the failure of Lactobacillus
dominance can lead to the overgrowth of pathogenic
bacteria resulting in bacterial vaginosis (BV) which is as-
sociated with adverse pregnancy outcomes [9, 11-13]. In
non-human primates, the vaginal microbiome presents
an increase in both richness and diversity [14]. The ewe
vaginal microbiome is dominated by species of
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Aggregatibacter, Streptobacillus, Cronobacter, Phocoeno-
bacter and Psychrilyobacter [15]. Unlike humans, the rela-
tive abundance of Lactobacillus species in the vaginal
ecosystem is low at less than 3.5% and 0.53% for chimpan-
zees and ewes, respectively [14, 15].

In cattle, various studies report a variety of microbial
compositions related to the vagina in female bovine.
Laguardia-Nascimento et al. [16] characterized the vagi-
nal microbiome of Nellore cattle using the next-
generation sequencing approach and found the main
bacterial phyla included Firmicutes (40-50%), Bacteroi-
detes (15-25%), and Proteobacteria (5-25%). Yeoman
et al. [17] showed that the cattle vaginal microbiota har-
bor many rumen bacteria and methanogens, suggesting
a possible role of the vagina in populating the rumen
microbiome. In a recent study, Shpigel et al. [18] charac-
terized the vaginal microbiome in the context of bovine
necrotic vulvovaginitis (BNVV). They found increased
abundance of Bacteroidetes and decreased community
richness. They also identified indicator taxa for BNVV
including Parvimonas, Porphyromonas, unclassified Veil-
lonellaceae, Mycoplasma and Bacteroidetes [18]. Domin-
ance by Aggregatibacter, Streptobacillus, Phocoenobacter,
Sediminicola and Sporobacter species are reported in a
study by Swartz et al. [15]. Members of Firmicutes, Bac-
teroidetes, Ruminococcus, Dialister, Aeribacillus, and
Porphyromonas were dominant colonizers in a study re-
ported by Gonzalez and colleagues [19]. Differences in
relative abundance of certain genera in the vaginal
microbiota in female bovine have been linked to repro-
ductive disorders. Increased relative abundance in mem-
bers affiliated with Bacteroides and Enterobacteriaceae
(35.83% and 18.62%, respectively) have been shown in
females with reproductive disease compared to healthy
individuals with relative abundance values of 28.3% and
17.8%, respectively [20]. Histophilus has also been iso-
lated from bovine vaginal communities diagnosed with a
reproductive disorder, and not from those possessing a
healthy reproductive function [20].

The interrelationship between hosts and their mi-
crobes is important in female fertility. In humans and
non-human species alike, the suppression and over
colonization of certain bacterial species in a niche results
in disease pathogenicity and emphasizes the importance
of understanding the interaction between host environ-
ment and its inhabiting microbes microbes [20-23]. It
has been reported that Lactobacillus dominance is cru-
cial to vaginal health in humans, but not other species
[14]. Studies have shown positive effects of using probio-
tics to shift microbial communities in gestating humans
to inhibit the growth of microbes that modify the host
inflammatory response and signal for pre-term birth
[24]. When ingested, these live organisms can alter the
vaginal and gut microbiomes to produce metabolites
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and products that promote favorable metabolic activity
during late stages of gestation [25]. Understanding the
role and function of certain species of bacteria play in
terms of fertility and overall reproductive performance
in female cattle could help increase the reproductive fit-
ness of cow herds worldwide.

Many steps will be needed to draw a causal relation-
ship between vaginal microbiome and reproductive
traits. Some of these steps include a first discovery type
study to show the correlation, the isolation and re-
inoculation of certain bacteria of interests into the va-
gina or the reduction of these bacteria to see the changes
in reproductive traits. Therefore, the purpose of this
study is the first step towards this end, to characterize
the vaginal microbiome of commercial beef heifers and
to determine if the vaginal microbiome could be used to
predict the ability of a heifer to establish a pregnancy.
Furthermore, this study seeks to understand the dynamic
communities of vaginal environments in the gestating
heifer by following individuals throughout pregnancy.
Due to the important role that gut microbiome plays
[26], we also included fecal microbiome in this study.

Materials and methods

Ethics statement

All animal work was approved and all methods were
performed in accordance with guidelines of the Institu-
tional Animal Care and Use Committee of the University
of Arkansas under protocol # 16024. The University of
Arkansas Division of Agriculture’s Beef Research Unit
near Fayetteville, AR, housed 72 crossbred beef heifers
averaging 420.88 + 17.42 d of age and 328.036 + 25.45 kg
at the initiation of this study.

Breeding strategy
At the onset of the breeding season, a 25 mg PGF2« in-
jection (Lutalyse®, Zoetis, Parsippany, NJ) was adminis-
tered intramuscularly in the neck. A heat detection
patch (Estrotect Heat Patches®, Melrose, MN) was placed
on the rump of each female. Heifers were then allocated
to 1 of 6, 1 ha grass pastures. Each day for the subse-
quent 7 d, all heifers were monitored for estrus activity
at 8:30 am. and 4:30 p.m.. Within 12h to 18 h of de-
tected estrus, heifers were artificially inseminated [27].
Following day 7 of estrus detection, those individuals
not showing signs of estrus like behavior were adminis-
tered a second PGF2a injection. This group of heifers
were monitored and artificially inseminated as described
above for 5 additional days. The remaining heifers were
then moved to 6, 2.4 ha fescue-bermuda grass mixed
pastures and were rotated every 28 d. Seven days after
transfer to the pastures, a fertile bull was introduced to
each pasture to initiate a 50-day breeding season. The
bulls were rotated among the pasture every 7 d. A breeding
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soundness examination was performed on each bull no
greater than 30 d before introduction to the heifer herd and
following the 50 d breeding season to confirm fertility.
After 50 d of exposure all bulls passed breeding soundness
examinations.

Ultrasound was performed twice: on 63 d to determine
pregnancies resulting from artificial insemination and on
60 d after bull removal to determine pregnancies result-
ing from bulls, when it is easy to identify Al versus bull
bred pregnancies due to difference in crown-rump
length (Additional file 1: Figure S1).

Sample collection

At the onset of breeding season, fecal samples were depos-
ited in 50 mL conical tubes and immediately placed on
ice. The vulva was wiped clean with a paper towel and va-
ginal swabs were collected by inserting a double guarded
culture swab (Jorgensen Labs, Loveland, Colorado, USA)
at a 45° angle into the vagina and moving to the posterior
cervix. At the posterior cervix, the swab and inner guard
were maneuvered through the outer guard. The swab was
then pushed out of the inner guard and rolled on the sur-
face of the vaginal epithelium for approximately 15s. The
swab was retracted back into the inner guard. The inner
guard (containing the swab with sample) was retracted
into the outer guard and the double guarded swab was re-
moved from the animal. The swab was cut from the han-
dle, placed in a 2-mL snap-cap tube with 1 mL of AMIES
transport buffer and placed on ice. All samples were
stored at —80°C. Fecal and vaginal samples were taken
from all individuals, as described previously at a second
time point during the first trimester of gestation. Vaginal
swabs were also taken from all heifers during the second
trimester of gestation and again for those with confirmed
pregnancies during the third gestational trimester (Add-
itional file 1: Figure S1).

Detailed health records were maintained for each
heifer throughout the entirety of the trial to ensure the
health status of each individual. Each female was vacci-
nated with an inactivated vaccine containing IBR (BHV),
BVD, BRSV, PI3, Leptospirosis and Vibriosis and treated
for external and internal parasites according to the Uni-
versity of Arkansas Division of Agriculture’s Beef Re-
search Unit cattle management protocol. Upon
completion of the trial, pregnant heifers were maintained
as one group and open heifers were culled. The retained
females grazed on fescue-bermuda grass pastures and
were supplemented with adequate free choice mineral
supplements during gestation. Within 24 h of birth, calf
sex and birthweight were recorded [27].

DNA extraction and next-generation sequencing
Approximately 0.1 g of thawed feces was used for DNA
extraction using the QIAamp PowerFecal DNA Kit
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(QIAGEN Inc., Germantown, MD, USA) according to
the manufacturer’s protocol. DNA was extracted from
the vaginal swabs wusing the QIAAmp BiOStic
Bacteremia DNA Kit (QIAGEN Inc., Germantown, MD,
USA) according to the manufacturer’s protocol. Nano-
drop One C (Fisher Scientific, Hanover Park, IL, USA)
was used to measure the DNA concentration and purity.

For library preparation, 10 ng of DNA were used for
PCR amplification targeting the V4 region of the 16S
rRNA gene. PCR was used to amplify each sample using
dual index primers according to [28]. Amplicons were
normalized using a SequalPrepTM Normalization Kit
(Life Technologies, Grand Island, NY, USA) according
to the manufacturer’s protocol. To generate the pooled
library, 5 uL aliquots from each normalized sample (vagi-
nal, n = 272; fecal, n = 64) were combined. The exact size
of the library product and the concentration was mea-
sured with a KAPA Library Quantification Kit (Kapa
Biosystems, Woburn, MA, USA) through quantitative
PCR (Eppendorf, Westbury, NY, USA) assay and an Agi-
lent 2100 Bioanalyzer System (Agilent, Santa Clara, CA,
USA). The library was diluted based on the results from
the qPCR and the bioanalyzer [27].

The 20 nmol/L pooled library, containing 336 individ-
ual samples, and a PhiX control v3 (20 nmol/L) (Illu-
mina) were mixed with 0.2 N NaOH and HT1 buffer
(Illumina). PhiX control v3 (5%, v/v) (Illumina) was
added to the mix and 600 pL were loaded into a MiSeq®
v2 (500 cycle) reagent cartridge for sequencing. The se-
quencing procedure was monitored periodically
throughout the assay using the Illumina BaseSpace®
website.

Sequence analysis

The paired sequencing read files (R1 and R2) (approxi-
mately 250 base pairs in length) were downloaded to a
local computer from the Illumina BaseSpace® website
and the data was processed using the Deblur program
integrated in the QIIME2 pipeline [29, 30]. Deblur ob-
tains single-nucleotide resolution called amplicon se-
quence variants (ASVs), exact sequence variants (ESVs)
or sub-operational taxonomic units (sub-OTUs) with
statistical methods based on upper-bound error profiles
within samples. Compared to other pipelines such as
DADA?2, UNOISE3 and open-reference OTU clustering
at 97% similarity methods, Deblur tended to call the
least amount of ASVs/OTUs [31], and is still robust for
ecological assessment of microbiota [32]. We have simi-
larly observed these patterns with our mock community
(ZymoBIOMICs Microbial Community Standard, Zymo,
Irvine, CA, USA) that contains eight bacterial taxa (Add-
itional file 9: Table S1). The Deblur processed sequences
were assigned to bacterial features, where features were
different from each other at the single-nucleotide level.
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The features generated by Deblur could be compared
between different studies. These features are synonym-
ous to ASVs, ESVs and sub-OTUs. The Uchime algo-
rithm was used to remove chimeric sequences [33].
Sequences were considered to be high quality if they
have more than 90% of the bases with Phred score
greater than 30 and passed the error reducing, chimera
detection and removal steps. These features were classi-
fied using the naive Bayes method [34] and Greengenes
(13_8 clustered at 99% similarity) database was used for
the training of 16S Classifier. To reduce the effect of se-
quencing bias on the downstream alpha and beta diver-
sity measures, the number of reads for fecal samples and
vaginal swabs were rarefied to 3,000 and 1,000, respect-
ively, which still resulted in saturated alpha diversity
measures (Additional file 2: Figure S2).

Ecological and statistical analyses

For all analyses, significance was determined as P < 0.05.
Shannon Diversity index [35], and richness (number of
observed OTUs) were calculated using QIIME2 to evalu-
ate alpha diversity. The Kruskal-Wallis test was per-
formed to explore differences in alpha diversities
(Shannon Diversity index and richness) between heifers
who established a pregnancy and those that did not, and
over time for fecal and vaginal samples. Beta diversity
was evaluated using Bray-Curtis [36] and Jaccard [37]
distances, calculated in QIIME2, to explore the dissimi-
larity between the communities’ structure and member-
ship, respectively. Random Forest was used to rank
microbial signatures that accurately differentiate groups
of female cattle. This machine learning technique ac-
counts for non-linear relationships and dependencies
among all microbial features. The relative abundance of
the top 1,500 features and alpha-diversity measures were
included as inputs for the Random Forest model. Each
input (feature) was given an importance score (MDA:
mean decrease accuracy) based on the increase in error
caused by removing that feature from the predictors.
Random forest uses about two-third of the samples in
the dataset as a training set by randomly sampling with
replacement and validate the selected features using the
remaining “out-of-bag” samples.

Results

Vaginal microbial diversity increased from the pre-
breeding season to the second trimester

A total of 336 samples were collected from commercial
beef heifers prior to breeding and during each trimester
of gestation. Vaginal (n=272) and fecal (n=64) were
utilized for DNA extraction and sequencing of the V4
region of the 16S rRNA gene. After removing low qual-
ity reads and chimeras using QIIME 2 (2018.8), 3,617,
919 and 1,584,626 high quality reads remained for
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vaginal and fecal samples respectively. Vaginal samples
averaged 13,862 reads per sample ranging from 1153 to
98,623 (Additional file 10: Table S2). Fecal samples aver-
aged 26,410 reads per sample ranging from 3045 to 453,
279 (Additional file 10: Table S2). These sequences were
assigned to 9496 and 4696 features based on 100% simi-
larity for vaginal and fecal samples, respectively. The se-
quence number was normalized to 1,000 for vaginal
samples and 3,000 for fecal samples to standardize sam-
pling for downstream alpha and beta diversity analyses.

At the community level, although remarkable variation
in the inter-animal dynamics of the alpha diversity was
observed (Additional file 3: Figure S3), significant differ-
ences in the overall alpha diversity (Shannon index and
the number of observed OTU’s) indices of the vaginal
microbiome were observed over time (Fig. 1a, Kruskal-
Wallis test, P=6.475e-05, Fig. 1b, Kruskal-Wallis test,
P =3.149e-05). Microbial diversity (Shannon index) from
both animals with and without established pregnancies
increased from pre-breeding to the second trimester
(P<0.05, Table 1) and from the first trimester to the
second trimester (P < 0.05, Table 1). The indices then
decreased from the second to the third trimester (P <
0.05, Table 1). Regarding community richness (e.g., the
number of observed OTUs), both open and bred individ-
uals showed an increase in the number of observed
OTUs from pre-breeding to the second trimester (P <
0.05, Table 1) and from the first trimester to the second
(P<0.05, Table 1). The number of observed OTUs de-
creased in bred females from the second trimester to the
third (P <0.05, Table 1). For fecal samples, we did not
detect any significant differences in Shannon indices by
pregnancy status or overall timeline (Fig. 1c, Kruskal-
Wallis test, P =0.53). Consistently, no significant differ-
ences in the total number of observed OTUs were ob-
served in fecal samples (Fig. 1d, Kruskal-Wallis test, P =
0.24). P values for pairwise comparison of fecal samples
are presented in Table 2.

No significant differences in fecal or vaginal alpha di-
versity measures (Kruskal-Wallis, fecal: P = 0.59; vaginal:
P =0.155) between the open and the bred female cattle
were observed at any time point.

Vaginal and fecal microbiomes are indistinguishable
based on the overall microbial membership and structure
between open and bred cows

We next examined dissimilarities in community mem-
bership and structure between pregnant and non-
pregnant females overtime. The Jaccard dissimilarity
matrix was used to evaluate bacterial community mem-
bership. To visualize the Jaccard distances, principal co-
ordinate analysis (PCoA) was applied to the Jaccard
dissimilarity matrix. Vaginal samples representative of all
time points and each pregnancy status cluster together



Deng et al. Journal of Animal Science and Biotechnology

(2019) 10:92

Page 5 of 13

p
A
500+
751
400+
[2]
x =)
g =
£ g 300+
c 5.0 [0}
2 . <
= %)
© ° o)
<
n : O 200
H
254 . ®
° [}
100 '
o 8 °
[ ]
B8 Bred B8 Bred
0.04 B3 Open 04 B8 Open
. . " " . " - .
s # S AT A
& < & Ng & &L <8 g
o & S8 S N N N O
Q< ) S off < N2 st of
C D
854
800
% 3
S 5ol =
£ o
o
S 9]
2 2 600
5 2
2 28
(2. (e}
L]
4001
L]
7.0
° - Bred - Bred
- Open - Open
&QQ é@} &(\0" ‘_}Q}
& P & N
o) & ') &S
Q@ & Q¥ N
Fig. 1 Vaginal and fecal microbial community alpha diversity measures between bred and open female cattle by stage. Diversity in the vaginal
and fecal community was measured using Shannon index (a, ¢) and observed OTUs (b, d). The bottom and top of each box are the first and
third quartiles, respectively, and the band inside the box is the median. Bred: cattle that were pregnant after the breeding season; Open: cattle
that never established pregnancy. Vaginal and fecal swabs were collected at the sampling points (e.g. 1st trimester) from both pregnant and
open cattle. The labels were defined based on the status of the pregnant cattle. Open cattle stayed open throughout the whole experiment

on principle coordinate axes 1 and 2 (PC1, PC2). No
differences based on pregnancy status were detected
(Fig. 2a, Analysis of Similarity, ANOSIM, stage 1: P=
0.542, R =-0.018; stage 2: P=0.805, R =-0.075; stage
3: P=0.856, R=-0.099), but differences in commu-
nity membership changed based on time (Fig. 2a,
ANOSIM, R=0.147, P<0.05). The Bray-Curtis index

was used to estimate dissimilarities in both commu-
nity membership and structure. PCoA plot based on
Bray-Curtis distance shows no distinct clustering ac-
cording to pregnancy status or time. No differences
based on pregnancy status were seen (Fig. 2b, stage 1:
P=0.452, R=0.008; stage 2: P=0.673, R=-0.029;
stage 3: P=0.825, R=-0.063), but differences in
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Table 1 P values related to alpha diversity measures in vaginal
samples based on pregnancy status®

Comparison Change in diversity P value
Shannon index 1 Bred 1 Open 0.243
2 Bred 2 Open 0445
3 Bred 3 Open 0.626
1 Bred 2 Bred 0.119
1 Bred 3 Bred Increase 0.0005"
1 Bred 4 Bred 0.146
1 Open 2 Open 0.140
1Open  30Open Increase 0001"
2 Bred 3 Bred Increase 0018’
2 Bred 4 Bred 0935
20pen 3 0pen Increase 0033"
3 Bred 4 Bred Decrease 0.047"
Observed OTUs 1 Bred 1 Open 0.158
2 Bred 2 Open 0.962
3 Bred 3 Open 0437
1 Bred 2 Bred 0.625
1Bred  3Bred Increase 0.002"
1 Bred 4 Bred 0.876
1 Open 2 Open 0.110
1Open  30Open Increase 0.002"
2 Bred 3 Bred Increase 0.003"
2 Bred 4 Bred 0419
20pen 3 0Open Increase 0.046
3 Bred 4 Bred Decrease 0.001"

“ Pair-wise comparisons between stage and pregnancy status were
determined to be statistically significant at P < 0.05

2 Vaginal samples were obtained from 72 beef heifers. Individuals that
established a pregnancy (n = 56) were samples before breeding (stage 1) and
at 3 time points during gestation (stages 2, 3, and 4). Individuals that failed to
establish a pregnancy (n=16) were sampled before breeding (stage 1) and
during the first and second trimesters of gestation (stages 2 and 3)

Table 2 P values related to alpha diversity measures in fecal
samples based on pregnancy status®

Comparison P value
Shannon index 1 Bred 1 Open 04945
2 Bred 2 Open 03519
1 Bred 2 Bred 04773
1 Open 2 Open 0.5249
Observed OTUs 1 Bred 1 Open 0.6073
2 Bred 2 Open 0.8361
1 Bred 2 Bred 0.085
1 Open 2 Open 0.3084

" Pair-wise comparisons between stage and pregnancy status were
determined to be statistically significant at P < 0.05

? Fecal samples were obtained from 32 beef heifers. Individuals that
established a pregnancy (n = 16) and those that did not (n = 16) were sampled
before breeding (stage 1) and during the first trimester (stage 2)
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community structure were observed based on time
(Fig. 2b, ANOSIM, R =0.138, P<0.05).

Interestingly, the PCoA plot based on Jaccard distance
for fecal samples shows distinct clustering patterns over
time (Fig. 2c, ANOSIM, R =0.391, P<0.001). No differ-
ences based on pregnancy status were observed (Fig. 2c,
stage 1: P=0.354, R=0.011; stage 2: P=0418, R=
0.007). Consistently, significant differences in fecal
community structure over time was demonstrated in
the PCoA plot based on Bray-Curtis distances (Fig.
2d). No differences based on pregnancy status were
seen (Fig. 2d, stage 1: P=0.4, R =0.006; stage 2: P=
0.789, R=-0.029). Similar patterns were observed
based on the PCoA plots based on unweighted Uni-
Frac (Additional file 4: Figure S4).

Remarkable inter-animal variation in community
composition

The top 15 bacterial features of the bovine vaginal
microbiome are shown in Fig. 3. The vaginal micro-
biome is dominated by an unclassified Enterobacteria-
ceae (21.05%), followed by Ureaplasma (4.37%) and an
unclassified Bacteroidaceae (2.49%, Fig. 3). At the
phylum level, Firmicutes was the most dominant taxon
comprising 31.57%, followed by Proteobacteria (24.08%),
Bacteroidetes (12.96%), and Tenericutes (4.95%, Add-
itional file 5: Figure S5). These 4 phyla constituted
79.30% of the overall bacterial abundance (Additional
file 5: Figure S5). In the fecal microbiome, the top 15
features includes several features associated with Rumi-
nococcaceae and Bacteroidaceae (Fig. 4). At the phylum
level, Firmicutes (45.93%), Bacteroidetes (18.83%), Eur-
yarchaeota (6.14%) and Actinobacteria (2.57%) were 4
most abundant taxa, constituting 73.47% of the overall
abundance in the fecal community (Additional file 6:
Figure S6).

Bacterial features are predictive of pregnancy status
To assess if pre-breeding vaginal or fecal microbiome
could be used to predict the success rate of pregnancy,
we developed a Random Forest model to identify the
bacterial features most predictive of pregnancy status.
We determined the optimal model based on the max-
imum area under the curve (AUC) using the AUC-RF al-
gorithm. For the vaginal microbiome, 15 features from
the pre-breeding vaginal samples selected by random
forest were able to predict if a cow could become preg-
nant with an AUC of 0.849 (sensitivity 0.933, specificity
0.679, Fig. 5a). The top 3 bacterial features including
Histophilus somni, Clostridiaceae 02d06, and Campylo-
bacter were more abundant in the open cows (Fig. 5b-e).
Surprisingly, pre-breeding fecal microbiome also ac-
curately predicted the capability of a cow to establish
pregnancy after breeding with even higher accuracy
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(AUC = 0.992, sensitivity = 1.0, specificity = 0.933, Fig. 6a).
Although 93 features were needed to obtain such a high
accuracy, the top 15 features (Fig. 6b) alone yielded a
very high AUC (0.929). The relative abundance and dis-
tribution of the top 3 features between the open and
bred fecal samples are shown in Fig. 6c-e. All of the 3
features (2 associated with Bacteroidales and 1 with
Lachnospiraceae) were more abundant in the feces of
cows that established pregnancy after breeding.

Of note, most of these discriminant features persisted
in subsequent time points (Additional file 7: Figure S7
and Additional file 8: Figure S8).

Discussion

Relatively little is known about the microbes that inhabit
the reproductive tract and their functions related to a fe-
male’s ability to reproduce. The bovine urogenital tract
houses a variety of microbes composed of aerobic,
facultative-anaerobic and anaerobic microorganisms
[38]. There is much variation in this niche due to intrin-
sic and extrinsic factors, and little is known about the
roles microbes play in reproduction [39].

No significant differences in bacterial community rich-
ness were observed in vaginal or fecal samples compar-
ing bred and open females. In humans [40, 41], 4 of the
5 CST’s are dominated by different species of Lactobacil-
lus leaving the fifth CST to be dominated by a mixture
of strict and facultative anaerobes [7, 8]. Bacterial vagin-
osis (BV), which negatively impacts fertility, has a micro-
bial composition similar to that of the fifth CST [42]. In
a human study comparing the vaginal microbiota of sub-
jects with and without clinically defined BV, those with
BV presented an increase in taxonomic richness and di-
versity measured by the number observed OTU’s (P <
0.001) and the Shannon index being 1.4 to 4.1 times
greater than those without BV [41]. The role Lactobacil-
lus species play in the bovine vaginal ecosystem is yet to
be determined, but it is possible that other species dom-
inating the bovine vaginal niche have similar function.

Human vaginal microbiome studies have demon-
strated the development of a more stable vaginal micro-
biota near the end of the gestation period. Aagaard et al.
[40] reported decreased species richness and diversity
that progressed with gestational age. A target set of
Lactobacillus related OTUs are enriched in women with
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Fig. 3 Relative abundance of bacterial features of different pregnancy status and stages in the vaginal microbiota of beef heifers. Multi-colored
stacked bar graphs represent the relative abundance of the top 15 bacterial features. These features were classified against the Greengenes
database and were shown at the deepest known classification. Each panel represents a stage (a: Pre-breeding, b: first trimester, c¢: second
trimester, d: third trimester) and each bar represents a sample. These stages were defined based on the status of the pregnant cattle. Open cattle

stayed open throughout the whole experiment

increased gestational age explaining changes in com-
munity membership and structure in late gestating
humans [40].

Interestingly, although significant differences in bovine
fecal microbial membership and structure over time
were detected, no change in community membership or
structure was observed in the vaginal niche of the female
bovine throughout gestation, suggesting the bovine vagi-
nal microbiome was stable and not affected by any of

these factors. In addition, no changes or clusters were
observed to differentiate pregnant from non-pregnant fe-
males in either vaginal or fecal samples at the commu-
nity level.

In this study, the top 2 dominating features of the vagi-
nal microbiota are affiliated with Escherichia/Shigella, and
Ureaplasma. Escherichia has been documented as a con-
tributing pathogen to metritis (uterine inflammation) due
to its ability to establish residency in the reproductive tract
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from contamination by feces, ascend up the reproductive
axis and maintain a presence in a contaminated uterus
[43, 44]. In dairy cows, metritis is considered to be one of
the most costly factors contributing to reproductive ineffi-
ciency due to increased days open, failure to conceive on
the first service, increased number of inseminations, and
failure to establish a pregnancy thus, establishing a link
between Escherichia and reproductive failure [45]. Urea-
plasma is a common isolate from cervicovaginal mucosal
samples from beef females with healthy reproductive tracts
[46]. However, Ureaplasma has been associated with cows
suffering from granular vulvitis syndrome and mastitis,
ciliostasis in cultured oviductal tissues and humans experi-
encing reproductive failure and infertility [47]. A previous
study claims that U. diversum in combination with Pasteur-
ella and/or Manheimia species causes lung lesions in calves
resulting in pneumonia and consequent reoccurring mor-
bidity [48]. This study agrees with the commonality of
Ureaplasma isolation in vaginal samples, and since it’s pres-
ence is similar among bred and open females, this could ex-
plain a requirement for interaction with other pathogens to
cause disease.

It is of particular interests to predict the likelihood of
a heifer to establish a pregnancy based on her vaginal
microbiome for improved reproduction strategies. Using
Random Forest, we were able to identify 15 bacterial fea-
tures that accurately (AUC =0.849) differentiate heifers
which established pregnancy from those that never did
at the pre-breeding stage. Member of Histophilus somni
was listed as the #1 predictor of pregnancy. Rodrigues
and colleagues described the vaginal microbiome of fe-
male cattle with reproductive disorder. They found Bac-
teroides, Enterobacteriaceae, and Histophilus to be the
top 3 dominant OTUs in unhealthy animals. Based on
Random Forest predictors from this study, Histophilus
can be used to predict the pregnancy status in vaginal
samples before breeding. Histophilus species are gram-
negative, non-spore-forming bacterium that can exist in
both pathogenic and non-pathogenic forms [49]. Both
forms of H. somni are isolated from the bovine mucous
membranes of nasal passages, the prepuce and sheath of
males and in the vagina of females [49]. Reproductive
disease manifestation, most likely due to venereal spread,
results in abortion, mastitis, and granular vulvovaginitis
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[49]. The increased abundance of Histophilus in females
that do not establish a pregnancy in vaginal samples
agrees with the presence of this OTU in animals with re-
productive disorder and suggests the potential role that
Histophilus plays in causing reproductive disorder. Clos-
tridiaceae was observed in vaginal and uterine samples
of animals and humans [6, 50, 51]. Certain species of
Clostridiaceae were linked to bacterial vaginosis in

humans [23, 51], but little is known about the function
of Clostridiaceae in animal reproduction. Campylobac-
ter, a clinical human and animal pathogen, can cause bo-
vine venereal campylobacteriosis or vibriosis, which is
the primary cause of abortion and infertility in cattle [52,
53]. In addition, Campylobaacter were also found as one
of the most important vaginal bacteria causing abortion
in sheep [54]. Feature 926, affiliated with Campylobacter,
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was listed as #3 predictor by Random Forest to predict
pregnancy. This bacterium was only present in female
cattle that did not establish pregnancy, which agrees
with the reported infertility in heifers caused by Cam-
pylobacter infection.

Interestingly, bovine fecal microbiome predicted the
establishment of pregnancy with even a higher accur-
acy than the vaginal microbiome (AUC=0.929) with
just 15 bacterial features. These features are associ-
ated with Bacteroidales, Ruminococcaceae, Coriobac-
teriaceae. Coriobacteriaceae has been isolated from
the vagina of cattle with and without reproductive
disorder, but it’s function is more accurately described
in its symbiotic relationship with the gut of insects
[20, 55]. This gram-positive, obligate anaerobe works
to ferment glucose, and other compounds found in
the foodstuffs of insects to produce lactic acid, etha-
nol, CO, and H, [55]. Three members of Coriobac-
teriaceae were listed as the top 15 predictors of
pregnancy in the feces. The relative abundance of
Coriobacteriaceae is smaller in cattle with pregnancy
than in those that never establish pregnancy. The
genus 5-7N15 has been identified in nasopharyngeal
[56], fecal [57, 58], milk [59] vaginal and uterine sam-
ples [50] of dairy cows or beef cattle. Mu et al. [57]
showed the genus 5-7N15 had a positive effect on
milk production in Holstein dairy cows. In our study,
members of 5-7N15 were listed among the top 15
features that distinguish open versus bred cattle in
both vaginal and fecal samples. More studies are
needed to investigate the role of genus 5-7N15 on
cattle reproduction. Of note, despite its accurate pre-
diction of the pregnancy status the causal relationship
between gut microbiome and pregnancy has yet to be
established. Colonization of the gut microbiome by
contamination from the environment, or the feces, or
possibly facilitated by intravaginal progesterone im-
plant in the vagina has been reported [60]. A recent
study showed the possible transmission of the gut
microbiome to the uterus in cows by blood [61],
which makes the connection between the gut micro-
biome and the reproductive tract. Nevertheless, given
the many factors affecting pregnancy (e.g. cycling or
not, timing of AI or breeding), the roles the gut
microbiome plays in beef cattle production (if at all)
need to be explored and validated by future experi-
ments such as fecal microbiota transplant and/or in-
oculation of gut bacterial isolates into the GI or
reproductive tract.

Conclusion

In conclusion, the ability to use the vaginal microbiome
in beef heifers to predict reproductive potential and ges-
tational period is confirmed. Using Random Forest we
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identified specific bacterial strains that can predict preg-
nancy status, for both vaginal and fecal niches. Findings
from this study advance the knowledge of the microbial
communities residing in the vagina of beef heifers before
breeding and throughout pregnancy.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/540104-019-0401-2.

Additional file 1: Figure S1. Flow chart of the experimental design
and sample collection.

Additional file 2: Figure S2. Rarefaction curve. (A) Rarefaction plot of
vaginal samples (one curve per group). (B) Rarefaction plot of fecal
samples. 1, 2, 3 and 4 in figure legend represent the pregnancy stage of
pre-breeding, first trimester, second trimester, and third trimester,
respectively.

Additional file 3: Figure S3. Alpha diversity (Shannon index) change of
vaginal microbiota for each sample. The bottom and top of each box are
the first and third quartiles, respectively, and the band inside the box is
the median. The connected point represent alpha diversity of animal
vaginal samples at different stage.

Additional file 4: Figure S4. Principal Coordinates Analysis (PCoA) of
unweighted UniFrac distances in vaginal (A) and fecal (B) samples across
gestation stages and between open and bred cattle. Triangles and circle
represent bred and open females, respectively. Stages are indicated by
color: red, blue, green and purple represent pre breeding, and gestational
trimesters 1 through 3 respectively. These stages were defined based on
the status of the pregnant cattle. Open cattle stayed open throughout
the whole experiment. Samples were collected prospectively but
pregnancy was defined retrospectively. The ellipses were calculated and
drawn with 0.95 of confidence level. Bred: cattle that were pregnant after
the breeding season; Open: cattle that never established pregnancy.

Additional file 5: Figure S5. Relative abundance of vaginal microbiota
at phylum level for each sample with different pregnancy status. Multi-
colored stack bar graphs represent the relative abundance. Each chart
represents a stage (A: Pre-breeding, B: first trimester, C: second trimester,
D: third trimester).

Additional file 6: Figure S6. Relative abundance of fecal microbiota at
phylum level for each sample with different pregnancy status. Multi-
colored stack bar graphs represent the relative abundance. Each chart
represents a stage (A: Pre-breeding, B: first trimester, C: second trimester,
D: third trimester).

Additional file 7: Figure S7. Relative abundance of predictive bacterial
features in vaginal samples across gestation stages and between open
and bred cattle. 1, 2, 3 and 4 On the X-axis represent the pregnancy
stage of pre-breeding, first trimester, second trimester, and third trimester,
respectively.

Additional file 8: Figure S8. Relative abundance of predictive bacterial

features in fecal samples at pre-breeding and first trimester and between

open and bred cattle. 1, 2, 3 and 4 On the X-axis represent the pregnancy
stage of pre-breeding, first trimester, second trimester, and third trimester,
respectively.

Additional file 9: Table S1. Sequencing results of mock community.
Additional file 10: Table S2. Summary of sequencing and alpha

diversity results for fecal and vaginal samples.
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