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Abstract

Background: Beef cattle breeding programs in Brazil have placed greater emphasis on the genomic study of
reproductive traits of males and females due to their economic importance. In this study, genome-wide associations
were assessed for scrotal circumference at 210 d of age, scrotal circumference at 420 d of age, age at first calving, and
age at second calving, in Canchim beef cattle. Data quality control was conducted resulting in 672,778 SNPs and 392
animals.

Results: Associated SNPs were observed for scrotal circumference at 420 d of age (435 SNPs), followed by scrotal
circumference at 210 d of age (12 SNPs), age at first calving (six SNPs), and age at second calving (four SNPs). We
investigated whether significant SNPs were within genic or surrounding regions. Biological processes of genes were
associated with immune system, multicellular organismal process, response to stimulus, apoptotic process, cellular
component organization or biogenesis, biological adhesion, and reproduction.

Conclusions: Few associations were observed for scrotal circumference at 210 d of age, age at first calving, and age at
second calving, reinforcing their polygenic inheritance and the complexity of understanding the genetic architecture
of reproductive traits. Finding many associations for scrotal circumference at 420 d of age in various regions of the
Canchim genome also reveals the difficulty of targeting specific candidate genes that could act on fertility; nonetheless,
the high linkage disequilibrium between loci herein estimated could aid to overcome this issue. Therefore, all relevant
information about genomic regions influencing reproductive traits may contribute to target candidate genes for further
investigation of causal mutations and aid in future genomic studies in Canchim cattle to improve the breeding program.

Keywords: Animal breeding, Composite breed, Genome-wide association, Genomic data, Single nucleotide
polymorphism
Background
Cattle breeding programs in Brazil have given greater
emphasis to the study and selection of reproductive
traits due to their economic importance for the produc-
tion system. In males, scrotal circumference traits are
related to the reproductive potential of bulls, because
testis size is associated with the production and quality
of sperm and the production of sex hormones [1].
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In general, female reproductive traits are difficult to
measure and, in some cases, are strongly influenced by
environmental factors. The reproductive performance of
heifers depends on the age at which they calve for the
first time; the ones that calve earlier have a more pro-
ductive life [2]. In addition to first calving, another im-
portant factor is that the cow continues producing
calves regularly to maintain its productivity and diminish
calving interval [3]. Studies have reported that indirect
selection of females based on the performance of bulls is
possible, considering the favorable genetic correlations
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between scrotal circumference measures and age at
calving [2, 4, 5].
Many achievements in animal breeding were obtained

based on the classical approach, using information from
phenotypes and pedigree. Nowadays, molecular data
analyses are bringing new insights to the genetic archi-
tecture of species. Regarding reproductive traits of beef
cattle, genome-wide association studies (GWAS) are
useful tools for the identification of candidate genes that
could be used to classify precocious or more fertile indi-
viduals [6, 7].
The identification of candidate genes provides a better

understanding of the distribution of genes that affect
traits of economic interest, as well as a basis for further
studies to identify causal mutations. Despite its potential,
important observations are needed for this approach.
According to Tabor et al. [8], the difficulty of replication
over time or across populations in this approach might
indicate that more detailed studies are needed to certify
its causality. Therefore, the aim of this study was to
perform a GWAS to identify genomic regions and candi-
date genes to uncover the genetic architecture of scrotal
circumference at 210 and 420 d of age and age at first
and second calving and aid in the breeding process in
Canchim cattle.

Methods
Canchim breed
The Canchim is a composite breed (62.5% Charolais and
37.5% Zebu) developed in the 1940s by the Brazilian
Agricultural Research Corporation (Embrapa), located in
São Carlos city, SP, Brazil [9]. Different crossbreeding
schemes have been studied to produce Canchim cattle
with different Charolais-Zebu proportions and to achieve
greater genetic variability in the population [10–13].
One of these schemes was used to produce animals of
the “MA” genetic group, which was derived from mating
Canchim-Zebu animals (F1) with Charolais animals,
resulting in approximate contributions of 65.6% Charolais
and 34.4% Zebu [14].
The Canchim cattle represents about 3% of the beef

cattle produced in Brazil [15]. Indicine breeds are much
more representative as purebreds or crossbred animals,
being responsible for 80% of the beef cattle industry in
the country [16].

Traits analyzed
The estimated breeding values (EBVs) used in our study
considered the following traits: scrotal circumference at
weaning adjusted for 210 d of age (SC210), scrotal cir-
cumference adjusted for 420 d of age (SC420), age at
first calving (AFC), and age at second calving (ASC).
Linear interpolation was previously used to adjust the
scrotal circumferences for 210 and 420 d of age.
The EBVs were obtained from the genetic evaluation
carried out by the Brazilian Agricultural Research
Corporation (Embrapa) for the Canchim breed which
considered 318,307 animals in the relationship matrix
and 267,002 animals with valid records. In general, the
traits analyzed by Embrapa for the genetic evaluation of
Canchim that could be highlighted are body weight traits
measured at various ages, reproductive traits of males
and females, carcass quality, navel visual score of males
and females, and hair coat. The EBVs were estimated by
multi-trait analysis using the REMLF90 program [17],
under an animal model. For the studied traits, the fixed
effects considered in the contemporary groups were year
and season of birth (January to March; April to September;
and October to December), farm of birth, genetic group,
and feeding system.
As described by Mokry et al. [18], the genotyped

animals were chosen according to the EBV for some
traits (ribeye area, back fat thickness, and productive
and reproductive traits), accuracy, family size, and
proportion of males and females. The mean EBV values
for SC210, SC420, AFC, and ASC were 1.44 mm,
2.07 mm, −4.34 d, and −1.23 d, respectively. Minimum
and maximum values for SC210, SC420, AFC, and ASC
varied from −8.76 to 12.74, −17.41 to 21.80, −50.89 to
44.64, and −42.46 to 44.66, respectively. De-regressed
proofs were not used due to limited data. Furthermore,
de-regressed proofs calculated with low accuracies are
expected to have a smaller genomic contribution due to
Mendelian sampling and will have more noise added in
de-regressed calculations [19].

Genotypes and quality control
The BovineHD BeadChip SNP panel (Illumina Inc., San
Diego, CA) was used to genotype 194 males and 205
females: 285 animals of the Canchim breed and 114
animals of the MA genetic group, calves of 49 bulls and
355 cows. The animals were born between 1999 and
2005 and come from seven farms in the States of São
Paulo and Goiás. A detailed description of these animals
was previously presented by Buzanskas et al. [20] and
Mokry et al. [18]. Genotype quality control excluded
SNPs with significant deviations (P < 10–5) from the
Hardy-Weinberg equilibrium, SNPs with minor allele
frequencies of less than 0.05, and call rate for SNPs and
animals lower than 0.90. Only autosomal chromo-
somes and SNPs with known positions, according to
the UMD_3.1 bovine genome assembly [21], were
used for GWAS.

Genome-wide association study
The Generalized Quasi-Likelihood Score (GQLS) method
[22] was used for GWAS. In this method, a logistic
regression was used to associate the EBVs (treated as
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a covariate) to the genotypes (treated as the response
variable), one SNP at a time. The EBVs were represented
by Xi = (X1, … , Xn)

', in which Xi represents the EBVs for
the ith animal. The genotype of the animals was coded
as “0”, “1” or “2” and, as the genotypes were represented
by Yi = (Y1, … ,Yn)

', in which Yi = ½ * (number of alleles
for animal genotype i), the respective proportions would
be equal to 0, ½ and 1. The expected SNP allele
frequency is represented by μ, in which μ = (μ1, … , μn)

' =
E(X| Y), thus 0 < μi < 1.
To associate μi with Xi, the following logistic regres-

sion was defined:

μi ¼ E Y i; jXið Þ ¼ eβ0þβ1Xi

1þ eβ0þβ1Xi

in which β0 is the constant term and β1 is the slope.
Under the null hypothesis, μi can be interpreted by

μi ¼ eβ0
1þeβ0

, for all i = 1 , … , n. The mean vector of Yi
no longer depends on Xi, which becomes μi = E(Y) = μ1, and
“1” is a vector. The solution of the “quasi-likelihood score”

results in an estimate for μ, such that μ^i ¼ 10A−11
� �−1

1
0
A−1

Y , in which A − 1 is the inverse of the relationship matrix of
the individuals.
To obtain the GQLS, the statistic WG was calculated

as in Feng et al. [22], as follows:

WG ¼ 2
μ̂ 1−μð Þ X

0
A−1 Y−μ1ð Þ

h i0

� X 0A−1X− X 0A−11
� �

10A−11
� �−1

10A−1X
� �h i−1

� X
0
A−1 Y−μ1ð Þ

h i

Under the null hypothesis, WG follows a Chi-squared
distribution with one degree of freedom [23], resulting
in P-values for each SNP. This method does not account
for the genetic variance explained by the marker. The
GQLS provides the advantage of accounting for the
population structure by means of the pedigree-based
relationship among animals (A − 1).
The false discovery rate (FDR) was used for multiple

testing corrections [24] to verify significant SNPs. The
P-values of each SNP were sorted in ascending order
and the following formula applied:

q < mP ið Þ=i
in which q is the desired level of significance, m is the
total number of SNPs, and P is the P-value of the ith
SNP. To account for multiple comparisons, a genome-
wide and chromosome-wise FDR of 5% (significant asso-
ciation) and 10% (suggestive association) was applied.
The main reason for considering a minimum FDR of
10% was to obtain a comprehensive number of SNPs,
which might assist to comprehend the genetic architec-
ture of the studied traits.
Pairwise linkage disequilibrium was estimated using

the r2 measure [25] for the SNPs with significant and
suggestive associations. The software Haploview [26]
was used to estimate r2 and plot the results. Due to the
high linkage phase consistency between Canchim and
MA genetic group (above 0.80 up to 100 kb) [27], ana-
lyses were conducted considering Canchim and MA as
one population.

Gene mapping and in silico functional analyses
The SNPs associated with the EBVs for SC210, SC420,
AFC, and ASC traits were surveyed to their correspond-
ing genes or to surrounding genes. The National Center
for Biotechnology Information (NCBI) database [28] and
Ensembl Genome Browser [29] were accessed to proceed
with in silico functional analyses of the genes. If the SNP
was located in the intergenic region (i.e. not assigned to
any gene), we observed, through the integrated maps of
the NCBI variation viewer, for the closest gene(s) and
calculated the distance(s).
The PANTHER tool [30] was used to access and

gather biological processes and pathway associations.
The AnimalQTLdb database [31] was used to verify
previous reports of quantitative trait loci (QTL) in the
surroundings of significant SNPs. The main reason to
use these tools was to validate our findings.

Results
A total of 672,778 SNPs and 392 animals were used for
GWAS. The Manhattan plots for chromosome-wise (in
blue) and genome-wide (in red) significantly associated
SNPs after FDR correction for SC210, SC420, AFC, and
ASC, respectively, are presented in Fig. 1. The greatest
number of significant SNPs was observed for SC420
(435 SNPs), followed by SC210 (12 SNPs), AFC (six
SNPs), and ASC (four SNPs) when considering FDR 10%
for all traits.
In Table 1 are presented SNPs and genes identified for

SC210, AFC, and ASC. For SC420, SNPs and genes are
presented in Table 2. Due to the large number of SNPs
associated with SC420, full information regarding genes,
pseudogenes, and non-coding RNA are presented in
Additional files 1, 2, and 3. For FDR 5%, a total of 249
(chromosome-wise) and 50 (genome-wide) SNPs were
observed for SC420 (Additional file 1). Considering FDR
10%, the regions observed in Table 1 presented a sug-
gestive association; therefore, the genes identified in
these regions were surveyed.
For SC210, chromosome-wise significantly associated

SNPs (P ≤ 0.00001) were located on chromosomes 20
and 28. Five SNPs were located in the intergenic or intra-
genic regions of SMIM23, PAPD7, ICE1, and EDARADD



Fig. 1 Manhattan plots for scrotal circumference at 210 d of age (a), scrotal circumference at 420 d of age (b), age at first calving (c), and age at
second calving (d). Chromosomes with significant SNPs are highlighted in black. The significant SNPs, after false discovery rate correction of 10%
(chromosome-wise), are highlighted in red. The significant SNPs, after false discovery rate correction of 10% (genome-wide), are highlighted in blue.
On the y-axis are presented the –Log of the P-values for each SNP. On the x-axis are presented the autosomal chromosomes
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genes, and non-coding RNA LOC101907249 (Table 1 and
Fig. 1a). On chromosome 28, seven SNPs were located in
the EDARADD gene.
For SC420, chromosome-wise and genome-wise asso-

ciations were observed on chromosomes 5, 9, 13, 14, 18,
and 21 (Fig. 1b). The SNPs were close or within a total
Table 1 Chromosome-wise association for scrotal circumference (SC

Trait Genes SNP Reference

SC210 SMIM23 rs135355728a

SC210 PAPD7 rs137042056a, rs136276163a

SC210 ICE1 rs41582170b

SC210 LOC101907249 rs136535499a

SC210 EDARADD rs110746860b, rs110371081b, rs109902875
rs110870694b, rs110610232b, rs134356559
rs210911576b

AFC NXPH1 rs133411648a

AFC EXOC4 rs110606254a

AFC ZMAT4 rs134390082a, rs137553882a, rs133519327a

rs135481346a

ASC FMN1 rs134100268b

ASC TMEM182 rs43661848a

ASC LOC790871 rs136610615a

ASC UBQLN3 rs43031470c

aintergenic region
bintron variant
cexon variant
Gene symbols, SNP reference number, and chromosomes (Chr) and positions (Pos,
are presented from 5′ to gene direction. If distance equals zero (0.00), the SNP is on
maximum (Max) significance obtained from the generalized quasi-likelihood metho
of 64 genes, 10 non-coding RNAs, 13 pseudogenes,
and two transfer RNAs. Full information on SNPs,
position, and genes are presented in the Additional
files 1, 2, and 3.
Six significantly associated SNPs (P ≤ 0.00001) for

AFC (Table 1 and Fig.1c) were located on chromosomes
210), age at first (AFC) and second calving (ASC)

Chr:Pos Distance to gene P-value (Min-Max)

20:3.48 14.22 8.96E-06

20:66.52..66.53 48.62..38.66 5.85E-06-p2.32E-05

20:67.81 0.00 2.13E-05

20:69.05 240.87 2.13E-05
b,
b,

28:9.14..28:9.16 0.00 6.71E-06-5.76E-05

4:17.46 45.77 8.26E-07

4:98.31 0.00 1.74E-06

, 27:35.19..35.21 48.32..29.34 1.23E-05-3.18E-05

10:29.88 0.00 2.43E-06

11:7.69 197.15 6.29E-06

11:22.29 69.94 2.77E-06

15:48.70 0.00 3.39E-06

in megabase) were obtained from NCBI website. Distances to gene (kilobase)
intragenic region. P-values are presented as the minimum (Min) and

d



Table 2 Highlighted genes from genome-wide (in bold) and chromosome-wise associations for scrotal circumference at 420 d of age

Symbol SNP Reference Chr:Pos Distances to gene P-value (Min - Max)

RAP1B rs110520377a, rs133990240a, rs109547215a, rs110160018b,
rs110261691c, rs109099268b, rs133124963b, rs109023687b,
rs110034677b, rs110091099b, rs109950552b, rs137658592b,
rs133340933b, rs134626455b, rs110001336b, rs109288126b,
rs137319832b, rs109506571b, rs109248631b, rs110027103b,
rs109561643b, rs109210079b, rs110160918b, rs134366426b,
rs109273768b, rs109024096b, rs110798702b, rs110625630b,
rs110219262b, rs134311132b, rs135497432b, rs133173059b

5:45.35..45.40 8.58..0.00 2.47E-07 - 7.64E-05

SRGAP1 rs110268648b, rs109748105b, rs134621421b 5:49.98..49.98 0.00 1.88E-06 - 6.55E-06

FOXM1 rs135705262b 5:107.39 0.00 4.00E-04

TOP1 rs134822694b, rs135287766b 13:70.39..70.40 0.00 3.86E-06

STAU2 rs137465376b, rs134711539b, rs137821036a 14:38.89..38.97 0.00..14.40 8.66E-05 - 5.00E-04

PEX2 rs137442228d, rs110035827a, rs41730291a 14:42.33..42.37 0.00..40.77 4.10E-04 - 9.80E-04

FABP5 rs109480456a, rs136045797a, rs133930486e, rs136613853b,
rs137684819c, rs133054550a, rs133483556a, rs136236059a,
rs136236059a, rs137344980a, rs135804214a, rs136785030a,
rs135727060a, rs133436244a, rs134708967a, rs43103204a

14:46.63..46.73 15.48..0.00..83.31 1.55E-05 - 1.16E-03

FABP12 rs43765470b, rs43765465a, rs41730924a 14:46.89..46.92 0.00..28.04 3.48E-05 - 2.88E-04

MED30 rs135065691c, rs41734435b, rs135292147a 14:48.94..48.97 4.03..0.00..9.76 8.27E-04 - 9.48E-04

TRHR rs133457508e 14:57.52 0.00 2.27E-04
aintergenic region bintron variant cdownstream variant d5′ UTR eupstream variant
Gene symbols, SNP reference number, and chromosomes (Chr) and positions (Pos, in megabase) were obtained from NCBI website. Distances to gene (kilobase)
are presented from 5′ to gene and 3′ to gene directions. If distance equals zero (0.00), the SNP is on intragenic region. P-values are presented as the minimum
(Min) and maximum (Max) significance obtained from the generalized quasi-likelihood method
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4 (NXPH1 and EXOC4 genes) and 27 (ZMAT4 gene).
For ASC, four SNPs were significantly associated
(P ≤ 0.000001) and located on chromosomes 10 (FMN1
gene), 11 (TMEM182 gene and LOC790871 pseudogene),
and 15 (UBQLN3 gene). Biological processes for SC210,
AFC, and ASC are presented in Fig. 2.
For SC420, biological processes and pathway associa-

tions are presented in Figs. 3 and 4, respectively.
PANTHER tool was able to account for 62 genes over-
represented among pathways when using Bos taurus as
background. Most of the biological processes were
Fig. 2 Biological processes for scrotal circumference (SC210) and
age at first (AFC) and second (ASC) calving
involved in metabolic (32 genes), cellular (22 genes),
developmental (14 genes), biological regulation (13
genes), and localization (11 genes) processes. Biological
processes were observed for the immune system (seven
genes), multicellular organismal process (seven genes),
response to stimulus (seven genes), apoptotic process
(six genes), cellular component organization or biogen-
esis (six genes), biological adhesion (four genes), and
reproduction (one gene). Pathway analysis showed that
the RAP1B gene is involved in four pathways, while the
IFNG, COL12A1, and SRGAP1 genes are involved in two
pathways.
The average linkage disequilibrium for each trait by

chromosome was equal to 0.70 (AFC - BTA27), 0.94
(SC210 – BTA20), 0.89 (SC210 – BTA28), 0.64 (SC420 –
BTA5), 0.69 (SC420 – BTA9), 0.90 (SC420 – BTA13), 0.56
(SC420 – BTA14), 0.85 (SC420 – BTA18), and 0.99
(SC420 – BTA21). Some significant or suggestive regions
presented r2 equal to zero. We highlighted the SC420 trait
due to the higher number of regions presenting significant
or suggestive associations (Additional file 4: Figs. S1,
S2, S3 and S4).

Discussion
The suggestive associations observed for SC210, AFC,
and ASC, could provide an insight over potential regions
responsible for the genetic variability of the traits. The
main reason to consider FDR 10% was to study and de-
scribe, in a broader point of view, the biological



Fig. 3 Biological processes for scrotal circumference at 420 d of age
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pathways to aid in the comprehension of these complex
traits. Furthermore, due to the polygenic inheritance of
these traits, it was expected that many loci with small
effects were responsible for expressing the phenotype
(or EBV). In some cases, we observed the lack of infor-
mation regarding the SNP or gene identified.
Fig. 4 Pathways associations for scrotal circumference at 420 d of age
We observed high average linkage disequilibrium among
significantly or suggestively associated SNPs for most of
the traits studied; therefore, there is evidence of direct or
indirect associations that could be affecting the traits.
Mokry et al. [27], when studying this Canchim population,
observed that the linkage disequilibrium estimated could
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be used for genomic selection and GWAS (minimum r2

varying from 0.33 to 0.40 up to 2.5 kb).
For SC210, we have found that the SMIM23 gene is lo-

cated inside QTL regions associated with the rate of non-
return to estrus in Swedish Red and Swedish Holstein
breed animals [32]. In this same region, McClure et al.
[33] found QTL for scrotal circumference in American
Angus cattle. Studies reported a QTL in the PAPD7, ICE1,
and LOC101907249 gene regions associated with percent-
age abnormal sperm in Holstein bulls [34] and calving
ease in Angus breed cows [33]. The EDARADD gene par-
ticipates in cell differentiation and mutations in this gene
can result in abnormal development of tissues and organs
of ectodermal origin [35]. In this region, a QTL associated
with pregnancy rate trait have been reported by Boichard
et al. [36]. No specific biological process for SMIM23,
ICE1, and LOC101907249 genes was observed in the
literature.
Few suggestive associations were observed for SC210

and none of the SNPs associated with SC210 presented
pleiotropic effect with SNP associated with SC420 (dis-
cussed below) or other studied traits (discussed as
follows), which could be due to low genetic correlation
among EBVs for these traits in our dataset.
Regarding the SC420 trait, we have identified the

STAU2 gene, which participates in multiple biological
processes (Table 2 and Fig. 3), highlighting reproduction,
developmental and immune system. This gene was
involved in muscle development [37] in Bos taurus indi-
cus, Bos taurus taurus, and Bos taurus taurus x Bos
taurus indicus. According to Ramayo-Caldas et al. [37],
the STAU2 gene was present in two main networks of
PPARGC1A and HNF4G genes, which acts as transcrip-
tion factors that activate a variety of hormone receptors
[38] and binding to fatty acids [39]. Peddinti et al. [40]
observed, through genetic network analysis, that one of
the main biological networks for bovine germinal vesicle
and bovine cumulus granulosa cell proteomes contain
the SRGAP1 and TOP1 genes, respectively.
The RAP1B gene is involved in four pathways (Fig. 4),

including gonadotropin-releasing hormone receptor path-
way. This gene was also observed associated with cell-to-
cell signaling network (integrin, ephrin receptor, and
mitogen-activated protein kinase signaling network) [40].
The MED30 and TRHR genes are strongly related to
thyroid hormone, triggering hormonal processes associated
with reproductive systems in males and females [41, 42].
Genes related to fatty acid, cholesterol, and triacylglyc-

erol, such as FABP5 [43], FABP12 [44], PEX2 [45], and
MED30 [46] are critical for energy and hormone pro-
duction in males and females. Cholesterol is a precursor
of steroid hormone production, such as testosterone,
and therefore it is involved in male growth and repro-
ductive development.
Important genome-wide associations on chromosome
14 for scrotal circumference were observed by Fortes
et al. [5], demonstrating that this chromosome presents
regions of interest that could be explored to identify
sexually precocious animals. These authors observed
associations with age at first corpus luteum in the same
regions as scrotal circumference and have attributed
their results to the genetic correlation between these
traits, thus genes and SNPs associated with puberty in
heifers were likely to be relevant for puberty in bulls,
and vice versa. On chromosome 14, a large number of
SNPs associated with puberty were identified in both
bulls and heifers. Urbinati et al. [47] found important
selection signatures in Canchim cattle on chromosomes
5 and 14, which were related to pigmentation (strongly
selected trait in Charolais and Canchim), productive and
reproductive traits.
Reports of QTL associated with reproductive traits of

interest may give support to the results found in our
study; however, most of the QTL were reported for
female traits. On chromosome 5, QTL associated with
the concentration of follicle-stimulating hormone in
Brahman and Hereford crosses [48], have been de-
scribed. The QTL were observed as associated with
interval to first estrus after calving [7] and dystocia in
dairy cattle [49] on chromosome 13. On chromosome
14, QTL associated with gestation period [50], number
of inseminations per conception [51], and ovulation rate
[52] have been reported.
As favorably correlated responses between scrotal cir-

cumference measures and age at first calving traits are
expected through selection, whereas the genes previ-
ously reported could be highlighted as a candidate to,
directly and indirectly, improve the reproductive per-
formance of males and females, respectively. Moreover,
fat deposition in cattle could be reflected in sexual
precocity and carcass finishing, traits that have become
the main concern of beef cattle breeders.
Few genes were observed across the positions of sig-

nificant SNPs for AFC (Table 1 and Fig. 1c). According
to Blaschek et al. [53], an association of the SNP
rs110984522 (178.73 kb apart from the SNP rs133411648)
was observed for sire fertility in Holstein breed. The
EXOC4 gene plays a role in insulin processing, metab-
olism of proteins, and peptide hormone metabolism
pathways. Reports of QTL associated with scrotal circum-
ference [33] have been described in this region. The
ZMAT4 gene, located on chromosome 27, participates in
the apoptotic, biological, developmental, and metabolic
processes. QTL associated with dystocia [49] and calving
ease [54] in Holstein cattle and non-return rate [55] in
Angus cattle have been described.
Significant SNPs for ASC are presented in Table 1 and

Fig. 1d. The FMN1 gene located on chromosome 10
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participates in actin cytoskeleton organization and is of
great importance for cell and muscle movements [56].
QTL associated with calving ease have been observed in
this region [33].
A QTL associated with scrotal circumference was ob-

served in the region of the TMEM182 gene [33]. No
function or biological processes have been described for
the LOC790871 and TMEM182 genes in the literature
or databases consulted. In the region comprising the
LOC790871 gene, QTL regions have been reported asso-
ciated with the following traits: scrotal circumference
[33], subcutaneous fat [57], and sperm motility [34] in
Angus, Holstein, and Charolais × Holstein crossbred
cattle, respectively.
It has been verified that the UBQLN3 gene is

expressed in the testes, acts in spermatogenesis in
humans and rats [58] and is conserved in mammals
(Homo sapiens, Mus musculus, Rattus norvegicus, Canis
lupus familiaris, and Bos taurus). This gene is involved
in the protein processing in endoplasmic reticulum
pathway. A QTL associated with weight and carcass
traits has been described [33] in the region in which the
UBQLN3 gene is located.
Conclusions
Few associations were observed for SC210, AFC, and
ASC, reinforcing their polygenic inheritance and the com-
plexity of understanding the genetic architecture of repro-
ductive traits. Finding many associations for SC420 in
various regions of the Canchim genome also reveals the
difficulty of targeting specific candidate genes that could
act on fertility; nonetheless, the high linkage disequilib-
rium between loci herein estimated could aid to overcome
this issue. Therefore, all relevant information about gen-
omic regions influencing reproductive traits may contrib-
ute to target candidate genes for further investigation of
causal mutations and aid in future genomic studies in
Canchim cattle to improve the breeding program.
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