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molecule for implantation in pigs and sheep
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Abstract

Osteopontin (OPN; also known as Secreted Phosphoprotein 1, SPP1) is a secreted extra-cellular matrix (ECM) protein
that binds to a variety of cell surface integrins to stimulate cell-cell and cell-ECM adhesion and communication. It is
generally accepted that OPN interacts with apically expressed integrin receptors on the uterine luminal epithelium (LE)
and conceptus trophectoderm to attach the conceptus to the uterus for implantation. Research conducted with pigs
and sheep has significantly advanced understanding of the role(s) of OPN during implantation through exploitation of
the prolonged peri-implantation period of pregnancy when elongating conceptuses are free within the uterine lumen
requiring extensive paracrine signaling between conceptus and endometrium. This is followed by a protracted and
incremental attachment cascade of trophectoderm to uterine LE during implantation, and development of a true
epitheliochorial or synepitheliochorial placenta exhibited by pigs and sheep, respectively. In pigs, implanting
conceptuses secrete estrogens which induce the synthesis and secretion of OPN in adjacent uterine LE. OPN then binds
to αvβ6 integrin receptors on trophectoderm, and the αvβ3 integrin receptors on uterine LE to bridge conceptus
attachment to uterine LE for implantation. In sheep, implanting conceptuses secrete interferon tau that prolongs the
lifespan of CL. Progesterone released by CL then induces OPN synthesis and secretion from the endometrial GE into
the uterine lumen where OPN binds integrins expressed on trophectoderm (αvβ3) and uterine LE (identity of specific
integrins unknown) to adhere the conceptus to the uterus for implantation. OPN binding to the αvβ3 integrin receptor
on ovine trophectoderm cells induces in vitro focal adhesion assembly, a prerequisite for adhesion and migration of
trophectoderm, through activation of: 1) P70S6K via crosstalk between FRAP1/MTOR and MAPK pathways; 2) MTOR,
PI3K, MAPK3/MAPK1 (Erk1/2) and MAPK14 (p38) signaling to stimulate trohectoderm cell migration; and 3) focal
adhesion assembly and myosin II motor activity to induce migration of trophectoderm cells. Further large in vivo focal
adhesions assemble at the uterine-placental interface of both pigs and sheep and identify the involvement of sizable
mechanical forces at this interface during discrete periods of trophoblast migration, attachment and placentation in
both species.
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Introduction
Domestic animal models for research are generally under-
appreciated [1]; however, pigs and sheep offer unique char-
acteristics of pregnancy, as compared to rodent or primate
models, and studies of pigs and sheep have provided sig-
nificant insights into the physiology of implantation in-
cluding: 1) elongation of the blastocyst into a filamentous
conceptus; 2) the protracted peri-implantation period of
pregnancy when the conceptus is free within the uterine
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lumen requiring extensive paracrine signaling between
conceptus and endometrium, as well as nutritional support
provided by uterine secretions; 3) a protracted and incre-
mental attachment cascade of trophectoderm to endomet-
rial epithelium during implantation; and (4) development
of a true epitheliochorial or synepitheliochorial placenta,
respectively, that utilizes extensive uterine and placental
vasculatures for hematotrophic nutrition, and placental
areolae for histotrophic support of the developing fetuses.
Our understanding of the complex mechanistic events that
underlie successful implantation and placentation across
species has been and will likely continue to be advanced
by studies of pigs and sheep as biomedical research models
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and to increase reproductive success in animal agriculture
enterprises providing high quality protein for humans.

Overview of the biology of osteopontin (OPN)
OPN is a secreted extracellular matrix (ECM) protein that
binds to a variety of cell surface integrins and several
CD44 variants [2-6]. Integrins are transmembrane glyco-
protein receptors composed of non-covalently bound α
and β subunits that promote cell-cell and cell-ECM
adhesion, cause cytoskeletal reorganization to stabilize ad-
hesion, and transduce signals through numerous signaling
intermediates [7,8]. Integrin-mediated adhesion is focused
within a primary mechanotransduction unit of dynamic
structure and composition known as a focal adhesion
whose size, composition, cell signaling activity and adhe-
sion strength are force-dependent [2,9]. The intrinsic prop-
erties of the ECM in different niches and tissue-level
compartments affect the composition and size of focal
adhesions that, in turn, modulate cell behavior including
gene expression, protein synthesis, secretion, adhesion,
migration, proliferation, viability and/or apoptosis [10].
Integrins are dominant glycoproteins in many cell adhe-
sion cascades, including well defined roles in leukocyte ad-
hesion to the apical surface of polarized endothelium for
extravasation of leukocytes from the vasculature into tis-
sues [11]. A similar adhesion cascade involving interactions
between the ECM and apically expressed integrin receptors
on the uterine luminal epithelium (LE) and conceptus
(embryo and placental membranes) trophectoderm is pro-
posed as a mechanism for attachment of the conceptus to
the uterus for implantation; the initial step for the exten-
sive tissue remodeling that occurs during placentation
[12]. OPN is a leading candidate adhesion molecule for
implantation in pigs and sheep [13].
OPN is an acidic member of the small integrin-binding

ligand N-linked glycoprotein (SIBLING) family of proteins
[9]. The breadth of literature pertaining to the diverse
functions of OPN is extensive, and OPN has been inde-
pendently identified as a protein associated with metastatic
cancers (2ar), as an ECM protein of bones and teeth
(OPN, BSP1, BNSP,SPP1), as a cytokine produced by acti-
vated lymphocytes and macrophages (early T-cell activa-
tion factor 1, Eta-1), and as a major constituent of the
uterus and placenta during pregnancy [13-17]. In general,
OPN is a monomer ranging in length from 264 to 301
amino acids. OPN contains a hydrophobic leader sequence
characteristic of a secreted protein, a calcium phosphate
apatite binding region of consecutive asparagine resi-
dues, a GRGDS sequence that interacts with integrins, a
thrombin cleavage site, and two glutamine residues that
are recognized substrates for transglutaminase-supported
multimer formation [3,5,6]. Genes encoding OPN from
different species present only moderate sequence conser-
vation, except in the NH2-terminal region, around the
Arg-Gly-Asp (RGD) integrin-binding sequence, and in
the COOH-terminus [3,5,6,18]. OPN undergoes extensive
posttranslational modifications that can alter its function
in different physiological microenvironments. These mod-
ifications include proteolytic cleavage, phosphorylation,
glycosylation, sulfation and cross-linking with self and
other macromolecules [19-23]. OPN is present on epithe-
lial cells and in secretions of the gastrointestinal tract (in-
cluding the liver), respiratory tract, kidneys, thyroid,
breast, testes, uterus and placenta [24-32]. Other cell types
that express OPN include leukocytes, smooth muscle cells,
and highly metastatic cancer cells [33-35]. OPN is a multi-
functional ECM protein reported to 1) stimulate cell-cell
adhesion, 2) increase cell-ECM communication, 3) pro-
mote cell migration, 4) decrease cell death, 5) stimulate
immunoglobulin production, 6) induce changes in phos-
phorylation of focal adhesion kinase and paxillin, 7)
stimulate phosphotidylinositol 3′-kinase activity, 8) alter
intracellular calcium levels, and 9) promote calcium phos-
phate deposition [36-42].

Timeline of key advancements in understanding the role
of OPN as an attachment factor for implantation
OPN was first observed in endometrial tissue when, in
1988, Nomura et al., [43] performed in situ hybridization
to localize OPN in mouse embryos, the endometrium
from the gravid and non-gravid uterine horns of pregnant
mice, and the endometrium from mice exposed to intra-
uterine injection of oil to induce a deciduoma. High levels
of OPN mRNA were detected in the LE, but not GE, of
the gravid uterine horns. Interestingly, epithelial expres-
sion of OPN appeared to be specific to pregnancy because
little to no OPN mRNA was observed in the uterine LE of
non-gravid or pseudopregnant mice [43]. In addition to
the LE, high levels of OPN mRNA were localized to the
granulated metrial gland (GMC) cells of decidual and
deciduoma tissues, with lower numbers of OPN positive
cells in the deciduoma of uteri [43]. It is noteworthy that
these investigators were the first to argue that OPN plays
a wider role than had previously been assumed, and that
its functions are not confined to bone development. The
decidual cells that express OPN have since been con-
firmed to be uterine natural killer (uNK) cells [44,45].
Similar to expression in mice, immunocytochemical stud-
ies performed by Young and colleagues in 1990 [25] local-
ized OPN protein to the decidua of women; however, in
contrast to mice, OPN was also expressed by the secretory
phase endometrial GE. It was suggested that the absence
of OPN in GE during the proliferative phase of the men-
strual cycle indicated that changes in expression in GE of
normal cycling endometrium were the result of hormonal
regulation and that the function(s) of OPN in the endo-
metrium might be associated with its ability to enhance
cell attachment [25].
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A significant conceptual advance regarding the function
(s) of epithelia-derived OPN was made by Brown and co-
workers [26] in 1992, when OPN mRNA and protein were
localized to epithelial cells of a variety of organs, including
the hypersecretory endometrial GE associated with preg-
nancy in women. In the secretory epithelia of all organs
examined, OPN protein was associated with the apical do-
main of the cells, and when the luminal contents were
preserved in tissue sections, proteins secreted into the
lumen were positive for OPN staining. It was hypothesized
that OPN secreted by epithelia, including uterine epithelia,
binds integrins on luminal surfaces to effect communi-
cation between the surface epithelium and the external
environment [26]. Between 1992 and 1996, Lessey and co-
workers established that transient uterine expression of
αvβ3 and α4β1 integrins defines the window of implant-
ation in women [46-48] and that altered expression of
these integrins correlates with human infertility [49,50].
Noting that the αvβ3 and α4β1 integrin heterodimers
present during the implantation window bind OPN, these
investigators suggested involvement of OPN and integrins
in trophoblast-endometrial interactions during the initial
attachment phase of implantation [46].
Comprehensive examination of the temporal and spatial

expression and hormonal regulation of uterine OPN
mRNA and protein and integrin subunit proteins in the
uteri and placentae of sheep (discussed in detail later in this
review), performed from 1999 through 2002, provided the
first strong evidence that OPN is a progesterone-induced
secretory product of endometrial glands (histotroph) that
binds integrins on apical surfaces of endometrial LE and
conceptus trophectoderm to mediate attachment of uterus
to trophectoderm for implantation [18,29,51,52]. Indeed,
pregnant Day 14 ewes, which lack uterine glands (uterine
gland knockout, UGKO phenotype), exhibit an absence of
OPN in uterine flushings compared with normal ewes, and
do not maintain pregnancy through the peri-implantation
period [53]. Similarly, functional intrauterine blockade of
αv and β3 integrin subunits, that combine to form a major
receptor for OPN, reduces the number of implantation
sites in mice and rabbits [54,55]. Further evidence for regu-
lation of uterine OPN by sex steroids was provided by re-
sults from studies using human and rabbit models.
Progesterone treatment increased OPN expression by hu-
man endometrial adenocarcinoma Ishakawa cells (in vitro
findings, 2001) as well as endometrium of rabbits (in vivo
findings, 2003) [56,57]. In contrast, i.m. injection of estro-
gen induced expression of OPN in the uterine LE of cyclic
pigs (in vivo, 2005) [58]. Results from pigs were the first to
suggest that conceptuses can directly regulate the regional
expression of OPN in the endometrium at specific sites of
implantation through secretion of estrogens [58,59]. Mi-
croarray studies from 2002 and 2005 strongly support a
role for OPN during implantation [60-62]. Two reports
confirmed that OPN is the most highly up-regulated
ECM-adhesion molecule in the human uterus as it be-
comes receptive to implantation [60-62].
Research regarding OPN has begun to focus on its inter-

actions with integrin receptors in the female reproductive
tract. In 2009, Burghardt and colleagues [63] reported the
in vivo assembly of large focal adhesions containing aggre-
gates of αv, α4, α5, β1, β5, alpha actinin, and focal adhe-
sion kinase (FAK) at the uterine-placental interface of
sheep, that expand as pregnancy progresses. It is note-
worthy that OPN was present along the surfaces of both
uterine LE and trophectoderm, although it was not deter-
mined whether it co-localized to the focal adhesions [63].
Similar focal adhesions form during implantation in pigs
[64,65]. Affinity chromatography and immunoprecipita-
tion experiments revealed direct in vitro binding of por-
cine trophectoderm αvβ6 and uterine epithelial cell αvβ3,
and ovine trophectoderm αvβ6 integrins to OPN [64,66].
These were the first functional demonstrations that OPN
directly binds specific integrins to promote trophectoderm
cell migration and attachment to uterine LE that may be
critical to conceptus elongation and implantation. Re-
cently (2014), Aplin and co-workers [67] employed three
in vitro models of early implantation with Ishakawa cells
to demonstrate that OPN potentially interacts with the
αvβ3 integrin receptor during implantation in humans.

Key events during the peri-implantation period of pigs
and sheep
Communication and reciprocal responses between the
conceptus and uterus are essential for conceptus survival
during the peri-implantation period of pregnancy. These
interactions also lay the critical physiological and anatom-
ical groundwork for subsequent development of functional
uterine LE, GE, stroma and placentae required to maintain
growth and development of the conceptus throughout
pregnancy. In a progesterone dominated uterine environ-
ment, establishment and maintenance of pregnancy in pigs
and sheep requires; (i) secretion of estrogens or interferon
tau, respectively, from the conceptus to signal pregnancy
recognition [68-71], (ii) secretions from uterine LE and
GE, i.e., histotroph, to support attachment, development
and growth of the conceptus [72-74], and (iii) cellular
remodeling at the uterine LE-conceptus trophectoderm
interface to allow for attachment during implantation
[8,75,76]. These events are orchestrated through endo-
crine, paracrine, autocrine and juxtracrine communication
between the conceptus and uterus, and the complexity of
these events likely underlies the high rates of conceptus
mortality during the peri-implantation period of preg-
nancy [77,78].
Implantation and placentation are critical events in

pregnancy. Implantation failure during the first three
weeks of pregnancy is a major cause of infertility in all
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mammals [77-80]. The process of implantation is highly
synchronized, requiring reciprocal secretory and physical
interactions between a developmentally competent con-
ceptus and the uterine endometrium during a restricted
period of the uterine cycle termed the “window of recep-
tivity”. These initial interactions between apical surfaces
of uterine LE and conceptus trophectoderm begin with
sequential phases i.e., non-adhesive or pre-contact, ap-
position, and adhesion, and conclude with formation of
a placenta that supports fetal-placental development
throughout pregnancy [81-83]. Conceptus attachment
first requires loss of anti-adhesive molecules in the gly-
cocalyx of uterine LE, comprised largely of mucins that
sterically inhibit attachment [52,84,85]. This results in
“unmasking” of molecules, including selectins and galec-
tins, which contribute to initial attachment of conceptus
trophectoderm to uterine LE [86-88]. These low affinity
contacts are then replaced by a repertoire of adhesive in-
teractions between integrins and maternal ECM which ap-
pear to be the dominant contributors to stable adhesion at
implantation [1,8,52,89-91]. OPN is expressed abundantly
within the conceptus-maternal environment in numerous
species, including pigs and sheep [17,29,57,59,62,92,93].

Osteopontin is structurally and functionally suited to
support implantation of pig and sheep conceptuses
Depending on cell context and species, OPN expression
can be regulated by multiple hormones and cytokines,
including the sex steroids progesterone and estrogen
[28,51,56-58,94-98]. OPN mediates multiple cellular pro-
cesses, such as cell-mediated immune responses, inflam-
mation, angiogenesis, cell survival, and tumor metastasis
primarily through integrin signaling [3,5,17,99,100]. Integ-
rins are transmembrane glycoprotein receptors composed
of non-covalently bound α and β subunits that participate
in cell-cell and cell-ECM adhesion, cause cytoskeletal
reorganization to stabilize adhesion, and transduce signals
through numerous signaling intermediates [7,8]. OPN has
an expansive integrin receptor repertoire that includes
RGD-mediated binding to αvβ3 [101,102], αvβ1 [103],
αvβ5 [103], and α8β1 [104], as well as alternative binding
sequence-mediated interactions with α4β1 [105], and α9β1
[106]. OPN binding to these various receptors results in
diverse effects including: (1) leukocyte, smooth muscle cell
and endothelial cell chemotaxis; (2) endothelial and epithe-
lial cell survival; and (3) fibroblast, macrophage and tumor
cell migration [64,66,103,104,107]. Clearly, the ability to
bind multiple integrin receptors to produce different cellu-
lar outcomes greatly increases OPN’s potential role(s) dur-
ing conceptus development and implantation. Importantly,
OPN contains a serine protease cleavage site that when ac-
tivated generates bioactive OPN fragments [23,108], and
two glutamines that support multimerization of the pro-
tein [22]. It is notable that OPN is flexible in solution,
allowing for simultaneous binding to more than one in-
tegrin receptor [16,109]. Further, OPN can also exist in a
polymerized form cross-linked by transglutaminase. Ho-
motypic OPN bonds have high tensile strength, suggesting
that self-assembly is involved in cell-cell and cell-matrix
interactions [22]. These multimeric complexes may pre-
sent multiple RGD sequences for simultaneous binding to
integrins on multiple surfaces [22,110]. Therefore, OPN
has the potential to bind multiple proteins and to partici-
pate in assembly of multi-protein complexes that bridge
and form the interface between conceptus to uterus during
implantation.

OPN expression, regulation and function in the uterus
and placenta of gilts
A hallmark of pregnancy in pigs is the protracted peri-
implantation period of pregnancy when conceptuses are
free within the uterine lumen to elongate from spherical
blastocysts to conceptuses with a filamentous morph-
ology (Reviewed in [111]). Pig embryos move from the
oviduct into the uterus about 60 to 72 h after onset of
estrus, reach the blastocyst stage by Day 5, then shed
the zona pellucida and expand to 2–6 mm in diameter
by Day 10. At this stage, development of pig embryos di-
verges from that of rodents or primates. Within a few
hours the presumptive placental membranes (trophecto-
derm and extra-embryonic endoderm) elongate at a rate
of 30–45 mm/h from a 10 mm blastocyst to a 150–
200 mm long filamentous form, after which further
elongation occurs until conceptuses are 800–1,000 mm
in length by Day 16 of pregnancy [111]. During this
period of rapid elongation, porcine conceptuses secrete
estrogen beginning on Days 11 and 12 to signal initi-
ation of pregnancy to the uterus, and by Day 13 begin
an extended period of incremental attachment to the
uterine LE [17,69]. The attached trophectoderm/chorion-
endometrial epithelial bilayer develops microscopic folds,
beginning about Day 35 of gestation, and these folds in-
crease the surface area of contact between maternal and
fetal capillaries to maximize maternal-to-fetal exchange of
nutrients and gases [112].
In pigs, OPN is an excellent candidate for influencing

this complex environment of pregnancy, because the
OPN gene is located on chromosome 8 under a quanti-
tative trait loci (QTL) peak for prenatal survival and lit-
ter size, [113]. The temporal and spatial expression of
OPN in the porcine uterus and placenta is complex, with
independent and overlapping expression by multiple cell
types. Between Days 5 and 9 of the estrous cycle and
pregnancy, OPN transcripts are detectable in a small
percentage of cells in the sub-epithelial stratum compac-
tum of the endometrial stroma [59]. The morphology
and distribution of OPN mRNA- and protein-positive
cells in the stratum compactum of the stroma on Day 9
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of the estrous cycle and pregnancy suggest that these are
immune cells. Certainly Eta-1/OPN, is an established
component of the immune system that is secreted by ac-
tivated T lymphocytes [15]. It is reasonable to speculate
that because insemination in pigs is intrauterine, OPN
expressing immune cells may protect against pathogens
introduced during mating. A similar pattern of distribu-
tion of OPN-producing cells is also evident in the allan-
tois of the placenta beginning between Days 20 and 25
of pregnancy, and the number of these cells increases as
gestation progresses [58]. The identity of these cells re-
mains to be determined.
OPN expression in uterine LE increases markedly dur-

ing the peri-implantation period of pigs, but is never ob-
served in uterine LE during the estrous cycle [59]. OPN
mRNA is initially induced by conceptus estrogens in
discrete regions of the LE juxtaposed to the conceptus just
prior to implantation on Day 13, then expands to the en-
tire LE by Day 20 when firm adhesion of conceptus
Figure 1 OPN is synthesized and secreted from the luminal epithelium
A) H&E stained paraffin embedded thin section of the uterine/placental int
histotroph (note the intense red eosin protein staining) secreted by the gla
(bottom panels) is expressed in the uterus of a Day 80 pregnant gilt (expre
and then in both cell types to term). Note that OPN is not detectable in ut
of uterine LE to placental trophectoderm/chorion). This precise spatial distr
attaching uterus to placenta during epitheliochorial placentation.
trophectoderm to uterine LE occurs [58]. However, OPN
mRNA is not present in pig conceptuses [58,59]. In con-
trast to mRNA, OPN protein is abundant along the apical
surfaces of LE and trophectoderm/chorion, but only in
areas of direct contact between the uterus and conceptus
[58,59]. Remarkably, OPN mRNA and protein are not
present in uterine LE and chorion of areolae where the
chorion does not attach to LE, but rather forms a “pocket”
of columnar epithelial cells that take up and transport se-
cretions of uterine GE into the placental vasculature by
fluid phase pinocytosis [114] (Figure 1). OPN levels re-
main high at this interface throughout pregnancy [59], as
do multiple integrin subunits that potentially form hetero-
dimeric receptors that bind OPN [8,84,90].
All experimental and surgical procedures were in com-

pliance with the Guide for Care and Use of Agricultural
Animals in Teaching and Research and approved by the
Institutional Animal Care and Use Committee of Texas
A&M University.
(LE) only at sites of direct attachment of uterus to placenta.
erface of a Day 80 pregnant gilt illustrating an areola containing
ndular epithelium (GE). B) OPN mRNA (top panels) and protein
ssion begins in luminal epithelium (LE) on Day 13, in GE by Day 35,
erine LE associated with areolae where there is no direct attachment
ibution for OPN expression strongly suggests that it plays a role for
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Affinity chromatography and immunoprecipitation ex-
periments were performed to test whether the integrin
subunits αv, α4, α5, β1, β3, β5, and β6, expressed by por-
cine trophectoderm cells (pTr2) and porcine uterine epi-
thelial (pUE) cells, directly bind OPN. Detergent extracts
of surface-biotinylated pig trophectoderm (pTr2) and
uterine epithelial (pUE) cells were incubated with OPN-
Sepharose and the proteins that bound to OPN were
eluted with EDTA to chelate cations and release bound
integrins. To identify these integrins, immunoprecipita-
tion assays were performed using antibodies that suc-
cessfully immunoprecipitated integrin subunits from
pTr2 or pUE cell lysates. OPN directly bound the αvβ6
integrin heterodimer on pTr2 cells and αvβ3 on ULE
cells [64]. OPN binding promoted dose- and integrin-
dependent attachment of pTr2 and pUE cells, and stim-
ulated haptotactic pTr2 cell migration, meaning that
cells migrated directionally along a physical gradient of
nonsoluble OPN [64]. Further, immunofluorescence
staining revealed that both OPN and αv integrin subunit
localized to the apical surface of cells at the interface be-
tween uterine LE and conceptus trophectoderm at Day
20 of pregnancy. The αv integrin subunit staining
Figure 2 Expression, regulation and proposed function of OPN produ
(Trophoblast) elongate they secrete estrogens for pregnancy recognition. T
(osteopontin) from the uterine LE (luminal epithelium) directly adjacent to
is initiated when progesterone from CL down-regulates Muc 1 on the surfa
surfaces [84] for interaction with OPN, and likely other ECM proteins, to me
B) In vitro experiments have identified the αvβ6 integrin receptor on troph
OPN [64]. OPN may bind individually to these receptors to act as a bridgin
bridging ligand between one of these receptors and an as yet unidentified
pattern revealed large aggregates at the junction between
trophectoderm and uterine LE, suggesting the formation
of OPN-induced in vivo focal adhesions at the apical
surfaces of both conceptus trophectoderm and uterine
LE that facilitate conceptus attachment to the uterus for
implantation. The β3 subunit appeared in aggregates on
the apical surface of LE cells, but not trophectoderm
cells, fitting with affinity chromatography data indicating
direct binding of αvβ3 on pUE cells to OPN [64]. Finally,
OPN-coated microspheres revealed co-localization of
the αv integrin subunit and talin to focal adhesions at
the apical domain of pTr2 cells in vitro [64]. Collectively,
results support that OPN binds integrins to stimulate
integrin-mediated focal adhesion assembly, attachment,
and cytoskeletal force-driven migration of pTr2 cells to
promote conceptus implantation in pigs (Figure 2).
In addition to expression in LE during the peri-

implantation period, total uterine OPN mRNA increases
20-fold between Days 25 and 85 of gestation due to in-
duction of OPN expression in uterine GE [59]. The ini-
tial significant increase in GE is delayed until between
Days 30 and 35 when placental growth and placentation
are key events in pregnancy in pigs [5]. OPN expression
ced by the uterine LE of pregnant pigs. A) As porcine conceptuses
hese estrogens also induce the synthesis and secretion of OPN
the conceptus undergoing implantation [58]. The implantation cascade
ce of uterine LE [84]. This exposes integrins on the LE and trophoblast
diate adhesion of trophoblast to LE for implantation [58,59,64].
oblast, and the αvβ3 integrin receptor on LE as binding partners for
g ligand between these receptors. Alternatively, OPN may serve as a
integrin receptor expressed on the opposing tissue.
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in GE during later stages of pregnancy is also observed
sheep [115], and a microarray study in rats showed that
OPN expression increased 60-fold between Day 0 of the
estrous cycle and Day 20 of pregnancy, likely within the
decidua [116]. Indeed, OPN is expressed by uterine nat-
ural killer (uNK) cells of the mouse decidua [44,45]. Se-
cretions of GE in livestock, and the secretions of decidua
in rodents and primates, are critical to support implant-
ation, placentation, and fetal growth and development
[117,118]. OPN is also expressed in uterine GE of Day
90 of pseudopregnant pigs, suggesting that maintenance
of secretion of progesterone by CL is responsible for ex-
pression of OPN in GE [58]. Progesterone also regulates
OPN expression in the GE of sheep and rabbits [51,54],
as well as OPN synthesis by human Ishikawa cells [56].
However, the involvement of progesterone in the regu-

lation of OPN in uterine GE is complex as indicated by
recent analysis of long-term progesterone treatment on
the expression of OPN in pigs in the absence of ovarian
or conceptus factors. In addition to OPN expression,
other established progesterone targets including pro-
gesterone receptor (PGR) as an index of progesterone’s
ability to negatively regulate GE gene expression [119],
acid phosphate 5, tartrate resistant (ACP5, commonly
referred to as uteroferrin) as an index of progesterone’s
ability to positively regulate early pregnancy GE gene
expression [120], and fibroblast growth factor 7 (FGF7,
commonly referred to as keratinocyte growth factor)
provide an index of progesterone’s ability to positively
regulate gene expression in uterine GE beyond the peri-
implantation period [121]. Pigs were ovariectomized on
Day 12 of the estrous cycle when progesterone secretion
from CL is high and treated daily with intramuscular in-
jections of progesterone or vehicle for 28 days [122,123].
As anticipated, PGR mRNA decreased, uteroferrin
mRNA increased, and FGF7 mRNA increased in uterine
GE of pigs injected with progesterone [123]. Surpris-
ingly, long-term progesterone, in the absence of ovarian
and/or conceptus factors, did not induce OPN expres-
sion in uterine GE [123]. It is currently hypothesized
that the hormonal milieu necessary for the production
of individual components of histotroph varies, and may
require specific servomechanisms, similar to those for
sheep and rabbits, which involve sequential exposure of
the pregnant uterus to ovarian, conceptus, and/or uter-
ine factors that include progesterone, estrogens and IFNs
[124-126]. Recently OPN expression was compared in
placental and uterine tissues supplying a normally sized
and the smallest fetus carried by hyperprolific Large
White and Meishan gilts. Not only were levels of OPN
strikingly different between the two breeds of pigs, but
OPN was higher in the LE and GE of uteri surrounding
smaller sized fetuses, suggesting OPN may be associated
with placental efficiency [127].
OPN expression, regulation and function in the uterus
and placenta of ewes
Similar to pigs, the conceptuses of sheep remain free-
floating within the uterine lumen as they elongate from
spherical blastocysts to conceptuses with a filamentous
morphology (Reviewed in [88]). Sheep embryos enter the
uterus on Day 3, develop to spherical blastocysts and then,
after hatching from the zona pellucida, transform from
spherical to tubular and filamentous conceptuses between
Days 12 and 15 of pregnancy, with extra-embryonic mem-
branes extending into the contralateral uterine horn be-
tween Days 16 and 20. During this period of rapid
elongation, the mononuclear trophoblast cells of ovine
conceptuses secrete interferon tau between Days 10 and
21 of pregnancy, and implantation begins on Day 16 as
trophectoderm attaches to the uterine LE [70,88]. The
ovine placenta eventually organizes into discrete regions
called placentomes that are composed of highly branched
placental chorioallantoic villi termed cotyledons which
grow rapidly and interdigitate with maternal aglandular
endometrial crypts termed caruncles. Approximately 90%
of the blood from the uterine artery flows into the placen-
tomes for nutrient transfer from the maternal uterine cir-
culation to the fetus and exchange of gasses between these
tissue compartments [128].
The temporal and spatial expression of OPN in the uteri

and placentae of sheep is similar to that previously de-
scribed for the pig, except: 1) unlike in the pig, OPN is not
expressed by uterine LE; 2) induction of OPN in uterine
GE occurs earlier than in the pig during the peri-
implantation period, and expression in the GE is regulated
by progesterone; 3) OPN is a prominent component of
the stratum compactum stroma; and 4) although large
focal adhesions assemble during the peri-implantation
period of pigs, they are not observed at the uterine-
placental interface until later stages of pregnancy in sheep.
OPN mRNA and protein are present in a small popula-

tion of cells scattered within the stratum compactum
stroma immediately beneath the endometrial LE during
the early stages of the estrous cycle and pregnancy in sheep
[18]. OPN-producing cells are also present in the allantois
of the ovine placenta beginning between Days 20 and 25 of
pregnancy and increase in number as gestation progresses
[17]. As hypothesized for pigs, these are presumed to be
immune cells because Eta-1/OPN is a prominent player in
the immune system [15]. In contrast to pigs, in which the
OPN-expressing endometrial cells are readily evident in
the stratum compactum stroma throughout pregnancy,
these cells are difficult to discern in the sheep due to an
increase in expression of OPN by stromal cells between
Days 20 and 25 gestation [129]. In pregnant mice and pri-
mates, OPN in decidualized stroma is considered to be a
gene marker for decidualization [130,131]. Decidualization
involves transformation of spindle-like fibroblasts into
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polygonal epithelial-like cells that are hypothesized to limit
conceptus trophoblast invasion through the uterine wall
during invasive implantation [118]. Although Mossman
[132] and Kellas [133] described decidual cell characteris-
tics in the placentomal crypts of sheep and antelope, their
reports were largely ignored, and decidualization was not
thought to occur in species with central and noninvasive
implantation characteristic of domestic animals. However,
endometrial stromal cells do increase in size and become
polyhedral in shape in pregnant ewes following conceptus
attachment, and the classical decidualization markers des-
min and α-smooth muscle actin are expressed in these
cells, suggesting that OPN expression in this stromal com-
partment is part of a uterine decidualization-like response
to the conceptus during ovine pregnancy [129]. In con-
trast, no morphological changes in uterine stroma, nor in-
duction of OPN mRNA and protein, or desmin protein,
were detected during porcine pregnancy [129]. One of the
primary roles of decidua in invasive implanting species is
to restrain conceptus trophoblast invasion to a circum-
scribed region of the endometrium. Both pigs and sheep
have noninvasive implantation, but the extent of concep-
tus invasion into the endometrium differs between these
two species. Pig conceptuses undergo true epitheliochorial
placentation in which uterine LE remains morphologically
intact throughout pregnancy and the conceptus troph-
ectoderm simply attaches to the apical surface of uterine
LE surface without contacting uterine stromal cells [134].
Synepitheliochorial placentation in sheep involves ex-
tensive erosion of the LE due to formation of syncytia with
binucleate cells of the trophectoderm. After Day 19 of
pregnancy, conceptus tissue is opposed to, but does not
penetrate ovine uterine stroma [135]. Although specula-
tive, differences in stromal expression of OPN between
these species suggest that the extent of decidualization is
correlated positively with degree of conceptus invasiveness.
In contrast to pigs, OPN is not synthesized by sheep

uterine LE, but is nonetheless a component of histotroph
secreted from the endometrial GE into the uterine lumen
of pregnant ewes as early as Day13. It is not secreted by
uterine GE of cyclic ewes [18,29]. OPN mRNA is detected
in some uterine glands by Day 13, and is present in all
glands by Day 19 of gestation [18]. Progesterone induces
expression of OPN in the endometrial GE, and induction
is associated with a loss of PGR in uterine GE. Analysis of
uterine flushings from pregnant ewes has identified a
45 kDa fragment of OPN with greater binding affinity for
αvβ3 integrin receptor than native 70 kDa [29,51,52,108].
Comparison of the spatial distribution of OPN mRNA and
protein by in situ hybridization and immunofluorescence
analyses of cyclic and pregnant ovine uterine sections has
provided significant insight into the physiology of uterine
OPN during pregnancy. OPN mRNA increases in the
endometrial GE during the peri-implantation period;
however, it is not present in LE or conceptus trophecto-
derm [18]. In contrast, immunoreactive OPN protein is
present at the apical surfaces of endometrial LE and GE,
and on trophectoderm where the integrin subunits αv, α4,
α5, β1, β3, and β5 are expressed constitutively on the ap-
ical surfaces of trophectoderm and endometrial LE and
could potentially assemble into several heterodimers that
could serve as receptors for OPN including αvβ3, αvβ1,
αvβ5, α4β1, and α5β1 heterodimers which [29,52]. These
results strongly suggest that OPN is a component of histo-
troph secreted from GE into the uterine lumen of preg-
nant ewes in response to progesterone, and that OPN
binds integrin receptors expressed on endometrial LE and
conceptus trophectoderm.
Affinity chromatography and immunoprecipitation ex-

periments, similar to those described previously for pigs,
determined whether αv, α4, α5, β1, β3, β5, and β6 in-
tegrins expressed by ovine trophectoderm cells (oTr1)
directly bind OPN. Successful immunoprecipitation of la-
beled oTr1 integrins occurred with antibodies to αv and
β3 integrin subunits, as well as an antibody to the integrin
αvβ3 heterodimer. Antibody to the αv integrin subunit
also precipitated a β chain, presumed to be the β3 integrin
subunit, as an antibody to the β3 integrin subunit precipi-
tated an α chain at the same relative size as the bands pre-
cipitated by an antibody to the αvβ3 heterodimer. Thus,
the αvβ3 integrin on oTr1 cells binds OPN [66]. OPN
binding to the αvβ3 integrin receptor induced in vitro
focal adhesion assembly (see Figure 3), a prerequisite for
adhesion and migration of trophectoderm, through activa-
tion of: 1) P70S6K via crosstalk between FRAP1/MTOR
and MAPK pathways; 2) MTOR, PI3K, MAPK3/MAPK1
(Erk1/2) and MAPK14 (p38) signaling to stimulate troph-
ectoderm cell migration; and 3) focal adhesion assembly
and myosin II motor activity to induce migration of troph-
ectoderm cells [66]. Collectively, results indicate that OPN
binds αvβ3 integrin receptor to activate cell signaling
pathways that act in concert to mediate adhesion, migra-
tion and cytoskeletal remodeling of trophectoderm cells
essential for expansion and elongation of conceptuses and
their attachment to uterine LE for implantation (Figure 4).
Focal adhesions, the hallmark of activated integrins,

are prominent structures of cells grown in culture; how-
ever, they are rarely observed in vivo. It is noteworthy
that large aggregations of focal adhesion-associated pro-
teins that have been interpreted to be three dimensional
focal adhesions are present at the uterine-placental inter-
face of sheep [63]. By day 40 of pregnancy in sheep, the
punctate apical surface staining of integrin receptor sub-
units identified in peri-implantation uterine LE and con-
ceptus trophectoderm [52] is replaced by scattered large
aggregates of αv, α4, β1, and β5 subunits in interplacen-
tomal LE and trophectoderm/chorion cells. Integrin ag-
gregates are observed only in gravid uterine horns of



Figure 3 OPN stimulates in vitro activation of integrin receptors to form focal adhesions at the apical surface of oTr1 cells. A) Cartoon
illustrating a polystyrene bead coated with recombinant rat OPN containing an intact RGD integrin binding sequence, and allowed to settle onto
a cultured oTr1 cell. Note the illustrated representation of aggregated integrins, indicative of focal adhesion assembly, at the interface between
the surface of the bead and the apical membrane of the cell [52,64,66]. B) Immunofluorescence co-localization (left panels) to detect the aggregation
of αv integrin subunit (right panels) and talin middle panels), an intracellular component of focal adhesions, around beads coated with recombinant rat
OPN containing an intact RGD integrin binding sequence (RGD) or coated with recombinant OPN containing a mutated RAD sequence that does not
bind integrins [66]. Optical slice images from the apical plasma membrane of oTr1 cells are shown. Note the apical focal adhesions represented by
immunofluo rescence co-localization (yellow color) of the integrin αv subunit with talin that results from integrin activation in response to binding of
intact OPN on the surface of the bead. No apical focal adhesions were induced by beads coated with mutated OPN as evidenced by lack of integrin
αv and talin aggregation around the bead.
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unilaterally pregnant sheep, demonstrating a requirement
for trophectoderm attachment to LE, and aggregates in-
crease in number and size through Day 120 of pregnancy
[63]. Interestingly, no accumulation of β3 was observed
even though ITGB3 is a prominent component of the
uterine-placental interface during the peri-implantation
period in sheep [52]. In some regions of the interplacento-
mal interface, greater subunit aggregation was seen on the
uterine side, in other regions it was predominant on the
placental side; whereas in some others, both uterine and
placental epithelia exhibited prominent focal adhesions.
However, by Day 120 of pregnancy, extensive focal adhe-
sions were seen along most of the uterine-placental inter-
face [63]. The placentomes, which provide hematotrophic
support to the fetus and placenta, exhibited diffuse immu-
noreactivity for these integrins compared with interplacen-
tomal regions perhaps due to extensive folding at this
interplacentomal interface [63]. These results suggest that
focal adhesion assembly at the uterine-placental interface
reflects dynamic adaptation to increasing forces caused by
the growing conceptus. Cooperative binding of multiple
integrins to OPN deposited at the uterine-placental inter-
face may form an adhesive mosaic to maintain a tight
connection and increased tensile strength and signaling
activity between uterine and placental surfaces along re-
gions of epitheliochorial placentation in sheep.
Steady-state levels of OPN mRNA in total ovine endo-

metrium remain constant between Days 20 and 40, in-
crease 40-fold between Days 40 and 100, and remain
maximal thereafter [18]. The major source of this OPN is
uterine GE which undergoe hyperplasia through Day 50
followed by hypertrophy and maximal production of his-
totroph after Day 60 [115]. Additionally, immunofluores-
cence microscopy demonstrated that the secreted 45-kDa
OPN cleavage fragment is exclusively, continuously, and
abundantly present along the apical surface of uterine LE,
on trophectoderm, and along the entire uterine-placental
interface of both interplacentomal and placentomal re-
gions through Day 120 of the 147 day ovine pregnancy
[115]. These findings definitively localize OPN as a se-
cretory product of the GE to regions of intimate contact
between conceptus and uterus, where OPN may influence



Figure 4 Expression, regulation and proposed function of OPN produced by the uterine GE of pregnant sheep. A) As the lifespan of the
CL is extended as the result of the actions of interferon tau secretion from elongating ovine conceptuses (Trophoblast) they secrete
progesterone. Progesterone then induces the synthesis and secretion of OPN (Osteopontin) from the uterine GE (Glandular Epithelium) [51]. The
implantation cascade is initiated with down-regulation Muc 1 (the regulatory mechanism remains to be identified) on the LE surface to expose
integrins on the LE and trophoblast surfaces for interaction with OPN to mediate adhesion of trophoblast to LE for implantation [29,51,52,66].
B) In vitro experiments have identified the αvβ3 integrin receptor on trophoblast as a binding partner for OPN [66]. OPN then likely acts as a
bridging ligand between αvβ3 on trophoblast and as yet unidentified integrin receptor(s) expressed on the opposing uterine LE. Note that the
α5 integrin subunit was immunoprecipitated from membrane extracts of biotinylated oTr1 cells that were eluted from an OPN-Sepharose column,
but the β1 integrin subunit, the only known binding partner for α5, could not be immunoprecipitated. Therefore, while we cannot definitively
state that OPN binds α5β1 integrin on oTr1, we are reticent to exclude this possibility.
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fetal/placental development and growth, and mediate
communication between placental and uterine tissues to
support pregnancy to term.
Increases in OPN from GE are likely influenced by

uterine exposure to progesterone, interferon-tau, and
placental lactogen which constitute a “servomechanism”
that activates and maintains endometrial remodeling,
secretory function and uterine growth during gestation.
Sequential treatment of ovariectomized ewes with pro-
gesterone, interferon tau, placental lactogen, and growth
hormone results in GE development similar to that ob-
served during normal pregnancy [126]. Administration
of progesterone alone in these experiments induced ex-
pression of OPN in GE, and intrauterine infusion of
interferon tau and placental lactogen to progesterone-
treated ovariectomized ewes increased OPN mRNA
levels above those for ewes treated with progesterone
alone [126]. An attractive hypothesis for OPN expression
in GE is that progesterone interacts with its receptor in
GE to down-regulate the progesterone receptor. This
removes a progesterone “block” to OPN synthesis, and
subsequent increases of OPN expression by GE are
augmented by stimulatory effects of placental lactogen.
Current studies focus on defining the role(s) of OPN
secreted from the uterine GE during later stages of
pregnancy.
Conclusions
Research conducted with pigs and sheep has significantly
advanced understanding of the role(s) of OPN during
implantation through exploitation of 1) the prolonged
peri-implantation period of pregnancy when elongating
conceptuses are free within the uterine lumen requiring
extensive paracrine signaling between conceptus and endo-
metrium, and 2) the protracted and incremental attach-
ment cascade of trophectoderm to uterine LE during
implantation. Although OPN is synthesized in different cell
types (LE in pigs, GE in sheep) and is regulated by different
hormones (conceptus estrogens in pigs, progesterone in
sheep), nonetheless OPN protein localizes to the interface
between the uterus and trophectoderm where it is well
placed to serve as a bifunctional bridging ligand between
integrins, expressed by uterine LE and conceptus troph-
ectoderm, to mediate attachment for implantation. It is
noteworthy that OPN has been reported to be a prominent
component of the uterine-placental environment of other
species including primates and rodents, and therefore
knowledge gained about the physiology of OPN in sheep
and pigs may have significant relevance to human preg-
nancy. Our understanding of events that underlie success-
ful implantation and placentation across species has been
and will likely continue to be advanced by studies of pigs
and sheep as biomedical research models.
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