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Abstract 

Background: The study of molecular processes regulating heat stress response in dairy cattle is paramount for devel-
oping mitigation strategies to improve heat tolerance and animal welfare. Therefore, we aimed to identify quantitative 
trait loci (QTL) regions associated with three physiological indicators of heat stress response in Holstein cattle, includ-
ing rectal temperature (RT), respiration rate score (RS), and drooling score (DS). We estimated genetic parameters 
for all three traits. Subsequently, a weighted single-step genome-wide association study (WssGWAS) was performed 
based on 3200 genotypes, 151,486 phenotypic records, and 38,101 animals in the pedigree file. The candidate genes 
located within the identified QTL regions were further investigated through RNA sequencing (RNA-seq) analyses of 
blood samples for four cows collected in April (non-heat stress group) and four cows collected in July (heat stress 
group).

Results: The heritability estimates for RT, RS, and DS were 0.06, 0.04, and 0.03, respectively. Fourteen, 19, and 20 
genomic regions explained 2.94%, 3.74%, and 4.01% of the total additive genetic variance of RT, RS, and DS, respec-
tively. Most of these genomic regions are located in the Bos taurus autosome (BTA) BTA3, BTA6, BTA8, BTA12, BTA14, 
BTA21, and BTA24. No genomic regions overlapped between the three indicators of heat stress, indicating the 
polygenic nature of heat tolerance and the complementary mechanisms involved in heat stress response. For the 
RNA-seq analyses, 2627 genes were significantly upregulated and 369 downregulated in the heat stress group in 
comparison to the control group. When integrating the WssGWAS, RNA-seq results, and existing literature, the key 
candidate genes associated with physiological indicators of heat stress in Holstein cattle are: PMAIP1, SBK1, TMEM33, 
GATB, CHORDC1, RTN4IP1, and BTBD7.

Conclusions: Physiological indicators of heat stress are heritable and can be improved through direct selection. Fifty-
three QTL regions associated with heat stress indicators confirm the polygenic nature and complex genetic determin-
ism of heat tolerance in dairy cattle. The identified candidate genes will contribute for optimizing genomic evaluation 
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Introduction
A global warming trend has been observed over the last 
century [1], which has unfavorable effects on livestock 
production. Thus, heat stress is becoming a major chal-
lenge facing the global dairy industry [2]. Heat stress is 
the result of the sum of external forces acting on an ani-
mal that evokes a series of behavioral and physiological 
responses, including sweating, higher respiration rate, 
vasodilation with increased blood flow to skin surface, 
reduced metabolic rate, decreased dry matter intake, 
and altered water metabolism [3]. During periods of 
heat stress the hypothalamic-pituitary-adrenal (HPA) 
and the sympathetic-adrenal-medullary (SAM) axis are 
activated for maintaining homeostasis in response to 
stressful stimuli [4]. Under chronic stress, cortisol secre-
tion associated with immune suppression [5, 6] leading 

to the animal becoming more susceptible to disease and 
immune challenges [7]. Heat stress is shown to severely 
alter the welfare, as well as productive and reproductive 
performance of dairy cows [8]. Due to the thermal hyster-
esis existing [9] for milk yield in dairy cattle, physiological 
performance traits are better indicators for monitoring 
heat load of individuals. We have established two scor-
ing systems for respiration rate and salivation (drooling) 
in addition to measuring rectal temperature in Holstein 
population [10]. Respiration rate score (RR), rectal tem-
perature (RT), and drooling score (DS) are lowly herit-
able traits controlled by numerous quantitative trait loci 
(QTL), each with a small effect, thereby making it more 
difficult to obtain fast genetic progress for these traits.

Genome-wide association studies (GWAS) are 
used to discover genomic regions associated with 

models by assigning higher weights to genetic markers located in these regions as well as to the design of SNP panels 
containing polymorphisms located within these candidate genes.
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phenotypes of interest [11], and consequently, bio-
logical processes in which they are involved in. For 
instance, Luo et  al. [12] identified candidate genes 
related to RT by using single-SNP regression GWAS. 
Subsequently, gene expression analyses were per-
formed to validate the key functional genes identified 
[12]. A recent method known as single-step GWAS 
[13] is becoming the gold standard method for GWAS 
as it enables the simultaneous integration of genomic, 
phenotypic, and pedigree information in a single anal-
ysis. ssGWAS has been widely used for scanning QTLs 
associated with complex traits in dairy cattle such as 
milk yield and composition traits in Holstein cattle 
[14, 15]; fertility and reproductive disorders [16]; and 
heat tolerance [17]. Furthermore, the combination of 
GWAS and transcriptomics has been shown to sig-
nificantly enhance the understanding of the genetic 
architecture of complex traits [18]. Understanding 
how genetic variation shapes the phenotypic variabil-
ity of complex traits requires the identification of such 
genetic polymorphisms through GWAS combined 
with functional evaluation of the key candidate genes 
through RNA sequencing (RNA-seq). RNA-seq is a 
technique that evaluates the quantity and sequences 
of RNA in a sample based on next generation sequenc-
ing (NGS) tools. RNA-seq analyzes the full transcrip-
tome, indicating which of the genes encoded in the 
DNA are turned on or off and to what extent [19]. To 
our best knowledge, no study has combined weighted 
single-step GWAS (WssGWAS) and RNA-seq for the 
determination of candidate genes and genetic variants 
associated with physiological indicators of heat stress 
in dairy cattle. Thus, the main objectives of this study 
were to: 1) identify genomic regions associated with 
RT, RR, and DS in Holstein cattle based on WssGWAS; 
2) search for candidate genes in the QTL regions 
that explain greater proportions of the total additive 
genetic variance of each trait; and, 3) utilize RNA-seq 
and gene network analyses to investigate the biological 
processes shared by the candidate genes identified for 
the three indicators of heat tolerance.

Material and methods
Phenotype, pedigree and genotypic data
A total of 69,837 (RT), 40,760 (RR), and 40,889 (DS) 
phenotypic records were collected in 15,303 lactating 
Holstein cows from 2013 to 2020. The process of data 
collection, scoring protocol of RR and DS, and farm 
management have been described in details by Luo 
et al. [10]. The descriptive statistics for the phenotypic 
data and environmental index (temperature-humidity 
index, THI) are presented in Table  1. Each lactating 
cow was recorded twice a day for two consecutive days 
(07:00–11:00 and 14:00–18:00). A small proportion of 
cows were measured in more than one lactation (i.e., 
> 4 records/cow).

The pedigree file contained 38,101 animals, span-
ning over three generations. A total of 3200 animals 
(3119 cows and 81 bulls) were genotyped using the 
Illumina 150 K Bovine Bead chip (Illumina, Inc., San 
Diego, CA, USA), which contains 139,377 single nucle-
otide polymorphism (SNPs). The individuals with 
call rate higher than 0.9 were kept and the call rate of 
genotyped individuals is 0.977 before imputation. All 
of the genotyped animals were included in a genotype 
imputation analyses for imputing the missing SNPs. 
This was done using the Beagle5.1 software [20]. Gen-
otype quality control kept SNPs with: minor allele fre-
quency (MAF) greater than 0.05, no extreme departure 
from Hardy-Weinberg equilibrium (P-value greater 
than  10−6), known chromosome and genome position, 
and located in the autosomal chromosomes. After the 
quality control, 114,766 SNPs and 3200 animals were 
kept for further analyses.

Statistical analyses
A multiple-trait model was employed to estimate 
variance and covariance components, which can be 
described as follows:

where y is the vector of phenotypic records (RT, RR, 
and DS); b is the vector of systematic effects including 

y = Xb + Za +Wpe + e

Table 1 Descriptive statistics of phenotypic records and environmental variables used in the analyses

NR number of records, NC number of cows, SD standard deviation, THI Temperature-humidity index

Variable NR NC Minimum Maximum Median Mean SD

Parity 74,041 15,304 1 10 2 2.19 1.37

Days in milk 74,041 15,304 1 921 188 194.8 126.31

Rectal temperature, °C 69,837 15,170 37.1 40.8 38.8 38.94 0.6

Respiration rate score 40,760 10,865 1 3 2 1.68 0.73

Drooling score 40,889 10,919 1 3 1 1.49 0.64

THI 74,041 15,304 70.5 90.2 81 80.75 3.67
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farm-year (for RT) or farm-year-scoring person (for TT 
and DS), parity (1, 2, or 3+), lactation stage (days in milk 
1–50, 51–100, 101–150, 151–200, 201–250, 251–300, 
or > 300), milking status (data collected before milk-
ing, after milking, or unknown), and THI (as a continu-
ous covariable in the model fitting a linear regression); a 
is the vector of random additive genetic effects; p is the 
vector of random permanent environmental effects; e is 
the vector of random residuals; and X, Z, and W are the 
incidence matrices linking phenotypic records to b,  a, 
and pe, respectively. The model assumptions are:

where σ 2
k(i,j)

 is the variance of the effect k (a, pe, e) of trait 
i, σk(i, j) is the covariance between trait i and j for the effect 
k. H is the matrix that combines pedigree and genomic 
information [21], and I is an identity matrix. The inverse 
of H was calculated as [21]:

where A is the numerator relationship matrix based on 
pedigree for all animals; A22 is the numerator relation-
ship matrix for genotyped animals. The G matrix was 
computed as [22]:

where Z is a matrix of gene content adjusted for allele 
frequencies (0, 1, or 2 for aa, Aa, and AA, respectively); 
D is a diagonal matrix of weights for SNP variances (ini-
tially D = I); M is the number of SNPs, and pi is the minor 
allele frequency of the ith SNP. Variance components 
were estimated using the average information-restricted 
maximum likelihood (AI-REML) procedure imple-
mented in the AIREMLF90 package from the BLUPF90 
family programs [23].

a ∼ N 0,H ⊗

σ 2
a(RT ) σa(RT ,RR) σa(RT ,DS)

σa(RT ,RR) σ
2
a(RR) σa(RR,DS)

σa(RT ,DS) σa(RR,DS) σ
2
a(DS)

pe ∼ N






0, I ⊗







σ 2
pe(RT ) σpe(RT ,RR) σpe(RT ,DS)

σpe(RT ,RR) σ
2
pe(RR) σpe(RR,DS)

σpe(RT ,DS) σpe(RR,DS) σ
2
pe(DS)













e ∼ N






0, I ⊗







σ 2
e(RT ) σe(RT ,RR) σe(RT ,DS)

σe(RT ,RR) σ
2
e(RR) σe(RR,DS)

σe(RT ,DS) σe(RR,DS) σ
2
e(DS)













H−1 = A−1 +

[

0 0

0 G−1 − A−1

22

]

G =
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i=1 2pi(1− pi)

Weighted single‑step genome‑wide association study 
(WssGWAS)
The estimates of SNP effects and weights for the Wss-
GWAS analyses (three iterations) were obtained accord-
ing to Wang et  al.  [24]. The weight for each SNP was  
 
calculated as: di = 1.125

|âi|
sd(âi)

−2[22], where i is the ith 
SNP. The percentage of the total additive genetic variance 
explained by the ith region was calculated as:

Where ai is genetic value of the ith region that consists 
of contiguous 10 SNPs, σ 2

a  is the total additive genetic 
variance, Zj is a vector of gene content of the jth SNP for 
all individuals, and ûj is the marker effect of the jth SNP 
within the ith region.

Candidate genes detection and functional enrichment 
analyses
Genomic windows of 10 consecutive SNPs that explained 
0.15% or more of the total additive genetic variance, 
based on the WssGWAS analyses, were considered to 
be associated with the studied traits. A Manhattan plot 
was created using the R software [25]. Genes were anno-
tated on the basis of the starting and ending coordinates 
of each window (using the ARS-UCD1.2 assembly as 
the reference genome; GCA_002263795.2) by using the 
R package ‘Biomart’ of Ensembl [26]. Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways and Gene 
Ontology (GO) terms were enriched via the “clusterPro-
filer” package [27].

RNA sequencing
Eight primiparous cows with DIM ranging from 135 to 
144 d (mid-lactation and pregnant) were selected from 
3200 genotyped individuals for RNA-seq. Blood sam-
ples were collected via the coccygeal venipuncture in the 
Spring (4 cows in April during the thermoneutral period 
with average daily temperature lower than 25 °C) and 
Summer (4 cows in July during heat stress period with 
average daily temperature higher than 25 °C) seasons, 
following the RT, TT, and DS recording on the same day. 
RT, TT, and DS were collected after blood samples col-
lected to reduce artificial stimulation. The experimental 
design in current study is consisted with other previous 
research investigating heat stress by RNA-seq [28, 29]. 
The RNA was isolated from blood according to the man-
ufacturer’s instructions of the TRIzol Reagent method 
[30]. The RNA concentration and quality were assessed 
using the Equalbit RNA BR Assay Kit (Invitrogen, CA, 

Var(ai)

σ
2
a

× 100% =
Var

(

∑10
j=1Zjûj

)

σ
2
a

× 100%
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USA) and Nanodrop 2000 (Thermo, Massachusetts, 
USA). RNA integrity was detected by 1% agarose gel 
electrophoresis and used for library construction with 
28S/18S > 1. For RNA-seq library, 2 μg of RNA was used 
for purification and fragment using NEBNext Poly(A) 
mRNA Magnetic Isolation Module (Cat No. E7490S, 
New England Biolabs Ltd., Hitchin, Herts, UK) then 
followed by cDNA library with NEBNext Ultra RNA 
Library Prep Kit for Illumina (Cat No. E7530S, New Eng-
land Biolabs Ltd., Hitchin, Herts, UK). All libraries were 
quantified by Equalbit DNA BR Assay Kit (Invitrogen, 
CA, USA) and pooled equimolarly. They were finally 
submitted for sequencing using the NovaSeq 6000 Sys-
tem (Illumina, Inc., San Diego, CA, USA) which gener-
ated 150 bases paired-end reads.

Differential expression and functional analyses
The quality of the sequencing reads was evaluated 
using the FastQC software (v0.11.9) and global trim-
ming using the Fastp [31]. All clean reads were mapped 
to the bovine genome of version ARS-UCD1.2 using 
the software STAR [32], and a Picard query [33] was 
carried out to eliminate duplicates. We investigated 
population structure through a principal component 
analysis (PCA) implemented in the PLINK software 
[34]. For differential expression gene screening, exact 
test based on quantile-adjusted conditional maximum 
likelihood (qCML) was performed using the edgeR [35] 
R package with criteria fold change ≥ 2 and 0.05 for the 
alpha of false discovery rate (4 samples vs. 4 samples). 
The heatmap was constructed using the pheatmap R 
package [36].

Results
Genetic parameter estimates
Estimates of variance components for RT, RR, and DS 
are shown in Table 2. The heritability estimates ranged 
from 0.03 (DS) to 0.06 (RT), with repeatability estimates 
ranging from 0.12 (DS) to 0.19 (RT), indicating the large 
environmental influence in these indicators of heat 
stress. Statistically significant genetic correlations were 
observed for RT with RR (0.22) and RR with DS (0.21).

QTL mapping and trait‑related gene identification
Figure  1 presents the genetic variance of each genomic 
window after performing WssGWAS with three iterations. 
Fourteen, 19, and 20 genomic regions reached the pre-
defined threshold (0.15%) and they explained 2.94%, 3.74%, 
and 4.01% of the total additive genetic variance for RT, RR, 
and DS, respectively. Most of these genomic regions are 
located in the Bos taurus autosome (BTA) BTA3, BTA6, 
BTA8, BTA12, BTA14, BTA21, and BTA24. However, we 
found no overlapping genomic regions between the three 
physiological traits in this study. The detailed information 
about these genomic regions related to the three physio-
logical traits and candidate genes are presented in Table 3.

Many windows with small effects regulated RT, RR, and 
DS co-occurred, indicating that these three physiologi-
cal indicators of heat stress are highly polygenic traits. 
A total of 54 protein-coding genes (27, 14, and 13 pro-
tein-coding genes located by the genomic region associ-
ated with RT, RS, and DS, respectively) were annotated 
in these genomic regions according to the Ensembl data-
base. The GO enrichment and KEGG pathway analyses 
of the 54 protein-coding genes for the three physiological 
traits revealed 68 significant GO terms (Additional file 1: 
Fig. S1) including biological process as well as molecu-
lar functions and two significant KEGG pathway (purine 
metabolism and thiamine metabolism).

General features and genetic background of cows sampled 
for RNA sequencing analysis
The environmental THI and physiological performance 
(RT, RR, and DS) parameters during the two sample col-
lection periods (April is the thermoneutral season in 
Beijing, named non-heat stress group, while July is the 
heat stress season, named heat stress group) were signifi-
cantly different. The milk yield of the cows in the non-
heat stress group (41.48 ± 3.52) was significantly higher 
than the cows in the heat stress group (35.25 ± 3.71). The 
description of environmental THI, physiological perfor-
mance, and milk yield during periods of blood samples 
collecting are shown in Table 4. The genetic relationship 
of the dairy population evaluated is presented in Fig. 2, 
which shows a diverse genetic background of the cows 
(red and blue dots) sampled for the RNA-seq analysis.

Identification of differentially expressed mRNAs 
by sequencing
There is a significant difference between the heat stress 
(HS) group and non-heat stress (NHS) group for RNA-
seq counts based on principle component analysis and 
clustering structure (Fig.  3). The analysis of the differ-
ently expressed genes (DEGs) were detected based on 
the quantile-adjusted conditional maximum likelihood 
method. A total of 2627 significantly downregulated 

Table 2 Genetic parameters, heritability, and repeatability for 
the evaluated physiological traits under heat stress

Trait σ
2
a σ

2

PE
σ
2
e

Heritability (SE) Repeatability

Rectal tempera-
ture

0.015 0.03 0.20 0.06(0.01) 0.19

Respiratory rate 
score

0.016 0.03 0.31 0.04(0.01) 0.13

Drooling score 0.011 0.03 0.29 0.03(0.01) 0.12
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genes were found and 369 upregulated genes in the NHS 
group compared to HS group (Additional file 2: Table S1). 
The GO enrichment and KEGG pathway analysis of 
DEGs revealed 21 significant GO terms including Biolog-
ical Process, Cellular Component, and Molecular Func-
tion and 86 significant KEGG pathways (Additional file 3: 
Fig. S2). There were 14 genes identified based on the 
WssGWAS that were also DEGs. Table 5 shows that two 
of the significant common genes are upregulated and the 
other ones are downregulated. Figure 4 shows the heat-
map of the mRNA expression of these 14 genes using 
hierarchical cluster of log2 from the relative normalized 
expression in bovine blood transcriptome.

Discussion
The estimation of genetic parameters and detection of 
genomic regions for three physiological indicators of heat 
stress in Holstein cattle contributes to further under-
standing of the genetic architecture of heat tolerance in 
cattle. The heritability estimates for the three traits are 
low (0.03–0.06) in the population evaluated but statisti-
cally different than zero. The variance component results 
utilizing the H matrix are similar to earlier estimates for 
the same traits using the numerator relationship matrix 
based on pedigree (A matrix; [10], indicating that the size 

of the datasets used is large enough to accurately estimate 
genetic parameters for these three traits. The heritability 
estimated for RT in 1695 lactating Holstein cows during 
heat stress (0.17 ± 0.13; [37]) and in 3396 straight-bred 
and crossbred Romosinuano, Brahman, and Angus cattle 
(0.19 ± 0.03; [38] using bivariate models with coat score 
are higher than the estimates observed in our population. 
However, their accuracies of estimation are lower due to 
their smaller datasets.

For low-heritability traits, substantial genetic progress 
can be achieved by increasing intensity and accuracy 
of selection [39, 40]. Subsequently, genomic selection 
could significantly speed up the rates of genetic progress 
[41] by improving accuracy of selection and reducing 
generation interval. In our earlier study [12], single-
SNP regression GWAS was performed for RT in a sub-
set of the current population including 7598 Chinese 
Holstein cattle with 1114 genotyped cows. Ten SNPs 
(located on BTA3, BTA4, BTA8, BTA13, BTA14, and 
BTA29) were found to be significantly associated with 
RT and five positional candidate genes were identified 
(SPAG17, FAM107B, TSNARE1, RALYL, and PHRF1). 
In the present study we identified 53 trait-related 
genomic regions and 53 protein-coding genes through 
WssGWAS. Contrary to the single-SNP GWAS, more 

Fig. 1 Proportion of the total additive genetic variance of 10-SNP genomic windows based on the weighted single-step genome association 
studies. A The Manhattan plot for rectal temperature. B The Manhattan plot for respiration rate score. C The Manhattan plot for drooling score. The 
red dashed lines represent the threshold 0.15% of the total additive genetic variance
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Table 3 Information of 10-SNP windows explaining more than 0.15% of the total additive genetic variance for rectal temperature, 
respiration rate score, and drooling score in Holstein cattle

Trait Chromosome Regions, Mb Genetic variance 
explained, %

Candidate genes

Rectal temperature BTA3 27.97–28.20 0.21 NGF,

BTA4 24.75–24.97 0.17 CRPPA, SOSTDC1

BTA5 11.11–11.25 0.23 PPFIA2

BTA6 52.82–53.08 0.2

BTA6 60.70–60.82 0.16 TMEM33

BTA8 79.10–79.56 0.25 NAA35, GOLM1, ISCA1, TUT7

BTA14 21.35–21.36 0.24

BTA14 73.81–74.05 0.15 OSGIN2, RIPK2

BTA21 46.59–46.82 0.19 NKX2–1, NKX2–8

BTA22 3.39–3.57 0.4

BTA24 58.68–58.86 0.22 PMAIP1

BTA25 25.60–25.89 0.19 XPO6, SBK1, LAT, SPNS1, NFATC2IP

BTA28 5.81–5.96 0.15 NTPCR, PCNX2

BTA29 38.30–38.69 0.18 PAG14, PAG16, PAG20, PAG21, PAG1, PAG19

Respiration rate score BTA1 11.73–11.92 0.2

BTA1 63.04–63.26 0.17

BTA2 11.79–11.95 0.16

BTA3 0.45–0.61 0.19 TIPR, GPR161, DCAF6

BTA7 71.05–71.22 0.15

BTA8 68.94–69.08 0.18 GFRA2

BTA8 71.00–71.19 0.16

BTA9 43.41–43.64 0.22 RTN4IP1, CRYBG1

BTA9 100.64–100.81 0.18 PDE10A

BTA12 20.93–21.07 0.16 WDFY2

BTA12 21.84–22.08 0.21 MRPS31, FOXO1

BTA14 21.59–21.61 0.37

BTA14 61.23–61.38 0.22 BAALC

BTA15 26.67–26.84 0.28

BTA17 6.06–6.22 0.15 GATB; FAM160A1

BTA23 1.11–1.50 0.2

BTA24 36.50–36.82 0.19

BTA29 4.88–5.08 0.18 CHORDC1

BTA30 120.98–121.08 0.17

Drooling score BTA3 31.88–32.01 0.19 OVGP1

BTA3 49.52–49.63 0.26 ABCA4, GCLM, DNTTIP2

BTA3 51.62–51.85 0.16 TGFBR3

BTA3 52.17–52.2 0.18

BTA3 53.14–53.3 0.18 ZNF326

BTA3 55.66–56.01 0.16

BTA6 37.35–37.38 0.16 NCAPG

BTA6 38.20–38.23 0.21

BTA11 34.30–34.71 0.17

BTA11 34.86–35.08 0.21

BTA12 65.62–65.83 0.18 GPC5

BTA12 65.96–66.18 0.27 GPC5

BTA13 49.30–49.48 0.16
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genomic regions were captured via WssGWAS (e.g., [42, 
43], showing that WssGWAS can be more successful in 
detecting QTL. According to study of simulation [42], 
single-step GWAS (based on single-step genomic best 
linear unbiased prediction) could take care of correction 
for population structure in GWAS like other mixed lin-
ear models (e.g. EMMAX). Comparing to the method of 
WssGWAS, BayesB appears to overly shrink regions to 
zero, while overestimating the amount of genetic varia-
tion attributed to the remaining SNP effects in chicken 

population [24]. We compared two scenarios (weight-
ing step including re-estimated GEBV and weighting 
step only with re-calculated SNP effect [24]) along with 
the inclusion of times of iteration for weighting (up to 5 
iterations, results not shown). Although, the process of 
WssGWAS with only re-calculated SNP effects or more 
than three iterations resulted in too much noise (results 
not shown), which is consistent with prior studies based 
on simulated data in dairy cattle [44] and real data in 
broiler chickens [24]. Additionally, it is critical to select 
the number of SNPs included in the sliding windows 
when performing (W)ssGWAS as wider windows could 
capture more genomic regions [45, 46]. The SNP chip 
used has an average inter-marker spacing of 26.07 kb, 
and the average distance between adjacent SNPs with 
linkage disequilibrium  (r2) higher than 0.4 was 200 kb in 
the studied population. Therefore, we selected 10-SNP 
windows in linkage disequilibrium when scanning QTL 
related to the three physiological traits.

RNA-seq analysis contributes to annotating new genes 
and splice variants, and provides cell- and context-specific 
quantification of gene expression. Research over the last few 

Table 3 (continued)

Trait Chromosome Regions, Mb Genetic variance 
explained, %

Candidate genes

BTA13 55.36–55.62 0.25

BTA14 25.58–25.73 0.15

BTA16 9.08–9.30 0.20

BTA16 69.97–70.17 0.25

BTA21 24.80–24.94 0.33 HDGFL3, TM6SF1

BTA21 57.87–58.10 0.17 BTBD7, UNC79

BTA24 47.70–47.91 0.17 ZBTB7C

Table 4 Summary statistics for environmental THI, physiological 
performance, and milk yield in April (non-heat stress) and July 
(heat stress)

Index at test day Non‑heat stress (April) Heat stress (July)

Rectal temperature 38.50 ± 0.19 39.3 ± 0.67

Respiration rate score 37.67 ± 6.37 95.17 ± 16.30

Drooling score 1 ± 0.00 2 ± 0.82

Milk yield 41.48 ± 3.52 35.25 ± 3.71

THI 61.37 ± 8.18 81.62 ± 3.89

Fig. 2 SNP-based principal component analysis of genotyped animals showing the diversity of animals selected for RNA sequencing samples. 
Red points represent the four heat stress season (HS) individuals, blue points represent the four non-heat stress season (NHS) individuals, and grey 
points represent the other individuals used in the weighted single-step genome-wide association study
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years has identified some of the physiological, metabolic, 
cellular, and molecular responses to heat stress in cattle 
[47, 48]. However, the level of gene expression depends on 
the physiological state of the organism and tissue analyzed. 
Cellular and transcriptomic adaptation of bovine granulosa 
cells were characterized to different heat stress intensities 
(39 °C, 40 °C, and 41 °C) in-vitro [49]. Several heat-respon-
sive genes from different functional classes were identi-
fied and their associated pathways related to heat stress 
chaperons, cell death, apoptosis, hormonal synthesis, and 
oxidative stress. The expression of miRNAs in dairy cattle 
mammary gland under heat stress was investigated [50] 

(483 known bovine miRNAs and 139 novel miRNAs were 
identified), which detected the heat-dependent differen-
tial modulation of miRNAs. Decreased expression of heat 
response-associated genes in blood during HS was also 
observed very recently in lactating cows [28]. However, it 
was not considered that if metabolism of the milking stage 
from Spring to Summer directly affects the gene expression 
levels. In the current study of RNA-seq, we selected primi-
parous cows with similar DIM to avoid the effect of differ-
ent lactation stage and the identified DEGs involved in the 
pathway of apoptosis, cellular senescence and autophagy, 
known to be affected by heat stress.

Validation of the results of GWAS is an essential com-
ponent of the experimental program. It could increase the 
level of trust held by animal breeders in genetic improve-
ment, and is important as confirmation of a scientific 
hypotheses [51]. There are many methods used to verify 
identified candidate genes/QTLs from GWAS results, 
e.g., SNP chip analysis [52], qRT-PCR [12], or association 
analysis in another population [53]. RNA-seq with the 
capabilities of high-throughput sequencing, could help 
us better understand the translation of genetic loci into 
biological mechanisms that underlie phenotypic expres-
sion of important traits [54]. Fourteen genes identified in 
WssGWAS were significantly and differently expressed 
between cows in heat stress period and thermoneutral 
conditions. PMAIP1 is a proapoptotic member of the 
BCL-2 protein family that acts as a proapoptotic sensi-
tizer/de-repressor and regulates diverse cellular func-
tions in autophagic cell death and metabolism [55, 56]. 
When comparing to heat shock of 38 °C and 43 °C, the 
expression of PMAIP1 was significantly and differentially 
upregulated in control (32 °C) mouse spermatogenic 
cells [57]. Another upregulated gene during heat stress 

Fig. 3 Cluster of heat stress and non-heat stress on the basis of read counts and volcano plot displaying differentially expressed genes. A, B 
Principle component analysis and dendrogram for samples collected under heat stress and non-heat stress on the basis of read counts. Red points 
in dot plot and red lines in dendrogram represent heat stress samples. Blue points in dot plot and blue lines in dendrogram represent heat stress 
samples. C Volcano plot showing significantly expressed genes. The red and green dots denote significantly downregulated and upregulated genes, 
respectively

Table 5 List of overlapping genes between weighted single-
step genome-wide association analysis and RNA sequencing

Trait Gene symbol Log2 Ratio FDR
(Non‑heat 
stress/ Heat 
stress)

Rectal temperature PMAIP1 1.21 1.11E-02

Rectal temperature SBK1 1.73 1.41E-03

Rectal temperature TMEM33 −1.35 4.35E-03

Rectal temperature TUT7 −1.39 5.92E-03

Rectal temperature NAA35 −1.09 3.47E-05

Respiration rate score GATB −1.36 2.44E-05

Respiration rate score CHORDC1 −1.64 1.99E-10

Respiration rate score TIPRL −1.36 1.91E-04

Respiration rate score DCAF6 −1.01 1.97E-04

Respiration rate score RTN4IP1 −1.14 4.96E-05

Respiration rate score CRYBG1 −1.14 6.40E-06

Drooling score BTBD7 −1.02 1.19E-03

Drooling score DNTTIP2 −1.37 1.48E-09

Drooling score NCAPG −1.53 7.59E-05
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based on the differential gene analysis is SBK1, which has 
been reported as part of widespread expression pattern 
involved in the protection of cells from apoptosis induced 
by the viral infection in ovarian cancer cells and promot-
ing the cellular survival [58].

Five genes (TMEM33, GATB, CHORDC1, RTN4IP1, 
and BTBD7), out of the 12 significantly downregulated 
genes, were identified in prior studies involving heat 
stress/heat shock and cellular adaptive functions in the 
presence of stressors or disrupting molecular mecha-
nisms. For instance, the overexpression of TMEM33 
cause expression of endoplasmic reticulum stress-
induced cell death signals increase, which leads to activa-
tion of the unfolded protein response signaling cascade 
and induction of an apoptotic cell death [59]. The gene 
GATB was identified to show significant transcriptional 
differences (downregulated gene) in response to heat 
shock where a temperature shift from 37 °C to 42 °C 
was accessed through the use of a microarray [60]. The 

GATB gene downregulation is shown to be responsible 
for the respiratory chain enzyme deficiencies [61], and 
thus disturbing the mitochondrial function and pos-
sesses complications for the much-needed energy inten-
sive physiological mechanisms to dissipate incremental 
heat load in cattle. Furthermore, during the temperature 
increase phase, GATB composed an operon and was 
downregulated in Clostridium botulinum (temperature 
shift from 37 °C to 45 °C over a period of 15 min; [62]. GO 
annotations related to CHORDC1 include Hsp90 protein 
binding, and this gene was associated with the regula-
tion of heat stress and immune response processes in rats 
[63]. Additionally, upregulation of CHORDC1 is shown 
to be primarily associated with dystrophic conditions 
[64]. Therefore, it can be assumed that the downregula-
tion of CHORDC1 is a positive adaptive sign of mecha-
nisms involving thermotolerance. RTN4IP1 (Reticulon 
4 Interacting Protein 1) is included in the gene ontology 
of oxidoreductase activity and transferase activity. The 

Fig. 4 Heat map showing the relative normalized expression of the mRNA of 14 genes in eight individuals between period of April-non-heat stress 
and July-heat stress using hierarchical cluster. Genes with increased expression are shown in red while those with decreased expression are shown 
in blue
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proteins of RTN4IP1 were down-regulated at 26 °C com-
pared to 18 °C in wild-type zebrafish [65]. The expression 
of RTN4IP1 tend to decrease in the presence of stress-
ors and decreased HSPs response, which again points 
towards a sort of possible homeostatic cellular response 
mechanisms initiated by the heat stressed dairy cow. 
BTBD7 [BTB (POZ) domain-containing 7] is involved 
in a variety of biological functions [66]. BTBD7 has been 
shown to be induced by a matrix protein at sites of cleft 
progression and induce a transcription factor and sup-
press cell adhesion [67]. Other studies described BTBD7 
as a cell growth suppressor protein (ZNF238 is expressed 
in postmitotic brain cells and inhibits brain tumor 
growth) and a promotor of angiogenesis [68]. This func-
tion points out to the possible conservation mechanisms 
of heat stressed cows showing high energetic mechanisms 
directed at attaining thermo-neutrality and mechanisms 
of vasodilation of peripheral blood distribution network 
[69]. Query of literature strongly support the involve-
ment of the possible candidate genes proposed in this 
study, in the regulatory mechanisms directed at differen-
tial homoerotic and homeostatic mechanisms manifest-
ing in various physiological modifications towards heat 
stress, as described in previous studies [70]. Given the 
relevant support from prior research studies about the 
possible involvement in heat stress/heat shock response, 
the identification of genomic regions and candidate genes 
through WssGWAS, and biological validation through 
RNA-seq analyses indicate seven genes (PMAIP1, SBK1, 
TMEM33, GATB, CHORDC1, RTN4IP1, BTBD7) as 
likely playing an important role in heat stress response. 
Further studies should investigate these candidate genes 
in more depth and in more controlled on-farm or in-vitro 
experiments in response to more divergent environmen-
tal heat loads.

Conclusions
Physiological indicators of heat tolerance are herit-
able and can be improved through direct selection. We 
identified 54 candidate genes associated with rectal 
temperature, respiration rate score, and drooling score 
in Chinese Holstein cattle using WssGWAS. A valida-
tion experiment based on RNA-seq of blood samples in 
Holstein cattle provided evidence of their possible role 
in the physiological responses to heat stress. The identi-
fied candidate genes (PMAIP1, SBK1, TMEM33, GATB, 
CHORDC1, RTN4IP1, BTBD7) may provide knowledge 
for developing genomic evaluation models by assign-
ing higher weights to genetic markers located in these 
regions or the development of SNP panels contained 
polymorphisms in these genes.
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