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Abstract

Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell
communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and
genetic information to alter the phenotype and function of recipient cells, which undergo different changes that
positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of
EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins,
and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different
physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can
influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication.
EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are
dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and
proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in

reproductive biology.

the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and
general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos.
Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation
and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and
embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the
role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in
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Introduction

Extracellular vesicles (EVs) are heterogeneous and
nanosized membranous vesicles secreted by a wide
range of cells throughout the body. They are found
in various body fluids, such as blood, urine, saliva,
and breast milk. EVs are known for their ability to
carry significant phenotype-altering cargo, such as
transcription factors and microRNAs [1]. Based on
their biogenesis and size, EVs are classified as

* Correspondence: jhkim541@konkuk.ac.kr

'Department of Stem Cell and Regenerative Biotechnology, Konkuk
University, Seoul 05029, Korea

Full list of author information is available at the end of the article

B BMC

exosomes (50~150 nm), microvesicles (100~1000
nm), or apoptotic bodies (500~4000 nm) [2, 3] (Fig.
1). Generally, EVs play a significant role in cellular
dumping or the release of waste materials. EVs de-
liver various cargoes, including mRNAs, microRNAs
(miRNAs), lipids, proteins, and nucleic acids, for
long-distance communication between cells [3, 4].
Pathological cells, such as cancer cells, secrete spe-
cific EVs with different compositions that can be
used as diagnostic markers for certain diseases and
can also be used for monitoring disease progression
[5-7]. Extracellular vesicle secretion has been ob-
served in various reproductive cells, such as
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Fig. 1 Biogenesis of extracellular vesicles in male and female reproductive systems. EVs are composed of functional proteins, mRNA, and
microRNA. In particular, the protein content of EVs depends on the cell type from which they are secreted. Biogenesis of extracellular vesicle (EV)
subtypes such as exosomes, MV, syncytial nuclear aggregates and apoptotic bodies. EVs are intraluminal vesicles which are released when a
multivesicular body fuses with the cell membrane through exocytosis. MVs are formed by outward shedding of the cell membrane into
extracellular space. Apoptotic bodies are generated when cells undergo apoptosis. The macromolecular components of EVs may play a significant
role in cellular functions and pathological states during ovarian and uterus cycling, implantation of female as well as male reproduction

follicular cells [8], oviductal cells [9], embryos pro-
duced in vitro [10], and endometrial cells [11]. EVs
regulate various reproductive physiological func-
tions, including ovarian follicle development, oocyte
maturation and fertilization, early embryo develop-
ment, and endometrial-conceptus crosstalk [8, 9,
12-14]. Exosomes are derived from the inward
pushing of the plasma membrane, which is typically
30-150 nm [15]. The endolysosomal system com-
prises a complicated and dynamic membranous net-
work that begins from the early to late sorting of
endosomes, formation of multivesicular bodies
(MVBs), and fusion with the plasma membrane for
secretion [3]. MVB formation is carried out by ma-
chinery that may either be endosomal sorting com-
plexes required for transport (ESCRT)-dependent or
ESCRT-independent. Exosomes and MVs are pro-
duced and secreted during normal cellular activity;
in contrast, apoptotic bodies are larger in size (500—
4000 nm), contain cell organelles within them, and
are released during apoptosis, which is one of the
major mechanisms of cellular death [16]. Studies
have reported that EVs from bovine follicular fluid
from small follicles (3—5 mm in diameter) and large
follicles (>9 mm in diameter) induce cumulus ex-
pansion during in vitro maturation [13].

Due to their unique composition, cells of origin,
and pathological characteristics, EVs are used to

diagnose various diseases. EVs contain microRNAs
(miRNAs) and proteins, which regulate inflammatory
responses and trophoblast invasion through intercellu-
lar delivery in the placental microenvironment [17].
Maternal circulating EVs play a significant role in the
formation of pro-inflammatory environments and
endothelial cell dysfunction in the placenta [18]. EVs
secreted from the embryo are involved in both the
dialogue with the maternal endometrium [19], and in
self-paracrine regulation [20]. Pig and human models
show that EVs can be secreted from the trophecto-
derm and stimulate the proliferation of endothelial
cells in vitro, thus becoming potential regulators of
maternal endometrial angiogenesis [19, 21]. Embryo
implantation is a crucial step in pregnancy, and fail-
ure of embryo implantation is a major limiting factor
in early pregnancy and assisted reproduction. Im-
plantation governs various physiological parameters,
including embryo viability, endometrial receptivity,
and embryo-maternal interactions. Embryo implant-
ation is regulated by various types of biomolecules,
particularly microRNAs , which function as transcrip-
tional regulators of gene expression. miRNAs not only
act in the cells, but can also be released by cells into
the extracellular environment through multiple pack-
aging forms, facilitating intercellular communication
and providing indicative information associated with
physiological and pathological conditions [22].
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The function of EVs in human reproduction depends
on the load of EVs and their ability to interact with re-
ceptor cells to deliver various types of cargo. EVs specif-
ically bind to target cells, depending on the EV content
and the specific receptors of the target cells or tissues.
Because of their stability, versatility, and their ability to
target recipient cells with specificity and transfer genetic
and protein material through biological barriers [23],
EVs are considered novel diagnostic and therapeutic
tools in reproductive biology. Their therapeutic potential
depends on their cargo composition. The release of EVs
from the placenta is regulated by a number of factors
that arise from the placenta. Changes in EV content and
functions might be used as diagnostic biomarkers in fe-
male fertility studies [24]. This review discusses the dif-
ferent types of EVs, general aspects of isolation,
purification, and characterization of EVs, particularly
from various types of embryos. Further, we discuss EVs
as mediators and messengers in reproductive biology,
the effects of EVs on placentation and pregnancy disor-
ders, the role of EVs in animal reproduction, male repro-
ductive system, and mother and embryo cross-
communication. In addition, we emphasize the role of
microRNAs in embryo implantation and the role of EVs
in reproductive and therapeutic medicine. Finally, we
discuss the future perspectives of EVs in reproductive
biology.

Types of EVs

Exosomes

EVs are classified as exosomes, microvesicles, and apop-
totic bodies, based on various parameters, such as cellu-
lar origin, biophysical and biochemical characteristics,
biological function, and biogenetic pathway. Exosomes
are nano-sized particles that are trafficked through the
endosomal pathway. Endosomal sorting complexes re-
quired for transport (ESCRTs) are important for the bio-
genesis of multivesicular bodies. Exosomes are derived
from the inward budding of the limiting membrane of
late endosomes, facilitating the formation of intraluminal
vesicles (ILVs). Exosome formation is governed by two
different mechanisms, ESCRT-dependent and independ-
ent; mechanisms including neutral sphingomyelinase/
ceramide formation and involvement of ARF6/PLD2
have also been reported to occur [25, 26]. ILVs released
from MVBs into the plasma membrane are called exo-
somes. On the other hand, the fusion of ILVs with lyso-
somes is mainly for the degradation of their contents
[27]. Exosome secretion is regulated by various factors,
such as members of the Rab guanosine triphosphatase
(GTPase) RAB27A, RAB27B, RAB11, and RAB35. The
machinery involved in the biogenesis of MVB and exo-
somes varies between tissues and cell types, which is
governed by specific metabolic needs [23, 28]. Almost all
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secreted exosomes are between 30 nm and 150 nm; in
some cases, it can be up to 200 nm, which is similar to
the size of viruses [28—30]. Exosomes are typically char-
acterized by the expression of surface markers, such as
CD9, CD63, CD81, Alix, TSG101, and flotillin, as well as
other markers [31]. Exosomes have been reported in
various cells and parts of the body including within the
zona pellucida [32, 33]. The human blastocyst cavity
contains exosomes that are CD63" and CD81" [34]. Pre-
vious studies have reported that small EVs are located in
various reproductive cells, including follicular fluid [8],
oviductal fluid [9], secreted by embryos in culture media
[35-37] and in endometrium flushing [11]. EVs from
oviductal fluid facilitate oocyte and embryo quality [14].
Preimplantation embryos secrete exosomes from CD9*
cells through exocytosis or endocytosis [38, 39].

Microvesicles

MVs are a population of EVs that are formed and re-
leased directly from the cell plasma membrane by out-
ward budding and fission from viable cells [40, 41] and
are regulated by multiple mechanistic approaches. MVs
are derived from budding events nucleated by the pro-
tein ARRDC1, which is recruited to the plasma mem-
brane along with elements of the ESCRT pathway,
generating 50 nm vesicles [42]. Another protein, Bin-1
(ampiphysin), facilitates the formation of curvature when
recruited to the membrane. The formation and release
of MVs are triggered by the remodeling of membrane
proteins and lipid redistribution, which modulate mem-
brane rigidity and curvature [43, 44]. ARF6 is a guano-
sine triphosphate—binding protein, a marker of MVs,
and is implicated in the regulation of cargo sorting and
promotion of the budding and release of MVs through
the activation of the phospholipase D metabolic pathway
[44, 45]. MVs play significant roles and various func-
tions, including cancer cell invasiveness, transformation
potential, disease progression and drug resistance, regu-
lation of autoimmune diseases, immune system modula-
tion and coagulation, embryo—maternal crosstalk, and
embryo self-regulation [46—49].

Apoptotic bodies

Apoptotic bodies are produced as a result of cell death,
alteration of several morphological changes, including
membrane blebbing, membrane protrusion formation
[50]. Apoptotic cell-derived extracellular vesicles, other-
wise called ABs, are a group of subcellular membrane-
bound extracellular vesicles generated during the de-
composition of dying cells. ABs can be generated by
many types of cells, such as stem cells, immunocytes,
precursor cells, osteoblasts, and endothelial cells [51].
The production of ABs occurs in a dose-and time-
dependent manner and is regulated by various factors,
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such as Rho-associated protein kinase (ROCK1) [52-54]
and myosin-light chain kinase (MLCK) [55]. Inhibition
of ROCK1, MLCK, and Caspases prevents the produc-
tion of ABs. ABs are produced by nuclear shrinkage and
plasma membrane blebbing in cells undergoing pro-
grammed cell death and MLCK contributes to the pack-
aging of nuclear material into ABs [56]. Actomysin also
plays a role in AB production by increasing cell contrac-
tion, hydrostatic pressure, and the formation of blebs
[57]. The membrane of ABs reflects the main changes
occurring on the cell surface of apoptotic cells. Apop-
totic microvesicles ranging from 0.1 to 1 pm in diameter
and small exosome-like EVs are released during apop-
totic conditions [58, 59]. ABs are formed by the frag-
mentation and packaging of cellular organelles, such as
the nucleus, endoplasmic reticulum (ER), or Golgi ap-
paratus into these vesicles [16, 60], which range from 1
to 5 um. The ER membrane is fragmented and forms
vesicles smaller than ABs that sediment at higher centri-
fugal forces. ABs are divided into two types based on the
type of cargo: DNA-carrying ABs, and cytoplasm-
carrying ABs [61]. ABs are typically characterized by
cytoskeletal and membrane alterations, including the
translocation of phosphatidylserine (PS) from the inner
to the outer leaflet of the lipid bilayer [62]. VDAC1 is an
apoptotic marker that forms ionic channels in the mito-
chondrial membrane and plays a role in triggering apop-
tosis; it is specifically localized in the vesicular fraction
[63]. Another AB marker is calreticulin, an ER protein
which is located in the subcellular localization. ABs are
associated with the immune system [64—66]; they ex-
press chemokines and adhesion molecules, such as
CX3CL1/fractalkine and ICAM3, and MHC class II mol-
ecules that can facilitate antigen presentation to CD4" T
cells and activation of immunological memory [67]. ABs
are being developed as an essential tool in cell-to-cell
communication between damaged and healthy cells. ABs
may stimulate the proliferation of resident stem/progeni-
tor cells, improve tissue regeneration, and replace dam-
aged cells [68, 69]. ABs originating from different cell
types have been shown to promote various functions. In
the hepatic stellate, ABs can promote differentiation and
cell survival [70]. ABs containing DNA from endothelial
cells induce the proliferation and differentiation of hu-
man endothelial progenitor cells in vitro [71]. ABs con-
taining microRNAs of cardiomyocytes enhance the
proliferation and differentiation of resident SCs in vitro
[72]. Administration of ABs carrying miR-126 inhibits
atherosclerosis and induces CXCL12-dependent vascular
protection [73]. ABs from cardiomyocytes enhance the
proliferation and differentiation of resident stem cells
(SCs) by transporting specific miRNAs [72], while ABs
containing miR-221 and miR-222 derived from macro-
phages promote the proliferation of epithelial cells [74].
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Isolation, purification and characterization of EVs
Isolation and purification of EVs

Isolation, purification, and characterization of EVs are
essential for the application of EVs in a variety of fields.
In particular, homogeneous separation and high yield
are important in clinical applications. In this study, we
provide a brief account of various isolation and purifica-
tion methods. Differential centrifugation is the most
commonly used method for the isolation of EVs [75].
The first step is low speed centrifugation at 300 x g for
10 min, which is required to eliminate cells. The second
centrifugation at 2000 x g is for pelleting membrane
debris and dead cells. The third centrifugation at 10,000
to 20,000 x g for 30 min is performed to pellet microve-
sicles. After these three steps, supernatants are collected
and a fourth centrifugation step is carried out at 100,000
to 200,000 x g for 70 min to isolate exosomes. In this
step, pellets are collected and washed with phosphate-
buffered saline (PBS), and centrifuged again under the
same conditions to remove impurities. Although the
centrifugation process provides EVs, ultracentrifugation
cannot remove contaminating lipoproteins from bio-
logical samples, such as blood. Hence, gradient centrifu-
gation and/or other chromatography techniques are
essential to remove impurities [76-79]. To improve the
population purity of EVs, gradient step centrifugation is
indispensable. In this step, the pellet is resuspended in
PBS, loaded into a sucrose cushion or gradient, and
ultracentrifugation is carried out. The vesicles are recov-
ered either from the bottom of the tube or from a spe-
cific fraction of the gradient, depending on their buoyant
density [75, 76, 80—83]. Ultracentrifugation is used to
improve purification of EVs. Otherwise, ultrafiltration is
utilized, where filtration membranes of different molecu-
lar mass cutoffs are centrifuged at moderate centrifugal
forces. This simple and rapid method allows the concen-
tration of vesicles at the interface of the filters. However,
the filtration method has some disadvantages, such as a
decreased vyield, and the use of pressure can cause the
EVs to deform or break into smaller vesicles.

Size-based exclusion chromatography is an efficient
chromatography technique that separates particles based
on their size, which can be used to separate and purify
EVs from proteins in complex biological samples. How-
ever, when used to purify EVs from plasma or serum,
this technique cannot efficiently separate EVs from lipo-
proteins of similar size [84]. To purify EVs from lipopro-
tein, density gradient ultracentrifugation followed by size
exclusion chromatography is needed [79]. Other types of
chromatography may also be used to purify EVs. Affinity
purification and ion exchange are used for the purifica-
tion of EVs from biological samples [85]. Immuno-
affinity columns selectively purify EVs using capture
agents, including heparin, tetraspanins, and epithelial
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cell adhesion molecule (EpCAM) [86-88]. Anion ex-
change chromatography is a simple, efficient, scalable,
and dependable method for the isolation of EVs from
cell culture supernatants [89, 90]. Negatively charged
EVs bind to positively charged columns, and EVs are
eluted from the column using increasing concentrations
of salt. The precipitation method is a rapid, feasible, and
cost-effective method that allows EVs to be pelleted by
low-speed centrifugation using polyethylene glycol [91]
or Exoquick [92]. However, the purity of EVs from the
precipitation method is not absolute; it may contain EVs
with other proteins and lipoproteins. In addition, EVs
purified from precipitation affect the viability and bio-
logical activity of recipient cells and EVs [93, 94]. Re-
cently, isolation of EVs has attracted microfluidic chip
technology, which is useful for the capture and analysis
of EVs from small volumes of clinical samples and shows
promise for liquid biopsy diagnosis of disease [95].
Microfluidic devices have been engineered for immuno-
capture using tumor-specific antigens, such as human
epidermal growth factor receptor (HER2) and prostate-
specific antigen (PSA) [96].

Characterization of EVs
The characterization of EVs is an essential step in clin-
ical applications. The first and leading technique is mi-
croscopy, which is used for morphology and size
analysis. In particular, electron microscopy techniques
are the only method available to visualize the appearance
of EVs, which are generally cup-shaped [97]. Atomic
force microscopy (AFM) is an alternative method for
analyzing the size distribution and quantity of EVs
within a sample. The use of aqueous media is advanta-
geous because it permits the maintenance of the physio-
logical properties and structure of EVs [98, 99]. The
combination of AFM and microfluidic techniques allows
for the consecutive isolation and characterization of EVs.
The size distribution of EVs can be measured by nano-
particle tracking analysis (NTA), a light scattering tech-
nique which is now widely used for the assessment of
EV size distributions and concentrations in the range of
50 to 1000 nm [100]. This technique is based on the in-
herent Brownian motion of particles in a solution. Dy-
namic light scattering (DLS), which uses the same
principle, can be also used to assess the EV size distribu-
tion. A tunable resistive pulse is a novel and less expen-
sive technique for the analysis of particle size
distributions within the range of 30 nm to 10 pm. The
system is composed of a thermoplastic polyurethane
membrane containing nanopores that are selected based
on size requirements. On the other hand, flow cytometry
is used to measure the size distribution, concentration,
and qualitative characteristics of EVs within a sample.
Light scatter flow cytometry can measure within the
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range of 300 nm to 500 nm; however, exosomes cannot
be measured because the size of exosomes is between 30
nm and 150 nm. Innovations in flow cytometry uses
fluorescent labeling of EVs, which reduces the lower
limit of detection to ~100 nm. Finally, antibodies
coupled with surface markers of EVs can be used to
measure nanosized EVs [101-104].

Isolation, purification and identification of EVs from
reproductive cells/embryos

EVs play a significant role in the male and female repro-
ductive tracts, making connections between the repro-
ductive tract and immature germ cells, or between the
mother and the developing embryo. As such, the uses of
EVs have potential implications for the establishment of
a successful pregnancy or understanding associated
pathological conditions [105]. Hence, we focused specif-
ically on the isolation, purification, and identification of
exosomes from embryos.

The isolation and purification of exosomes from som-
atic cell-cloned embryos were described previously [76,
106, 107]. Embryos were cultured for 3 d on defined
medium, and then the medium was subjected to differ-
ential centrifugation to remove various debris at 4 °C
(300 x g, 10 min to remove cells; 2000 x g, 10 min to re-
move dead cells; and 10,000 x g for 30 min to remove
cell debris, macroparticles, and apoptotic bodies). The
supernatants were then ultracentrifuged at 100,000 x g
for 70 min in 14 mm x 95 mm ultra-clear centrifuge
tubes (Beckman). The pellets from a single sample were
pooled, resuspended in PBS, and centrifuged again at
100,000 x g for 70 min. Each pellet was resuspended in
30 pL of the defined medium to supplement the
renewed culture medium. Exosomes were identified as
previously described [106].

The isolation of EVs from bovine embryos was de-
scribed previously [108]. Bovine embryos were cultured
on conditioned media and then sequential centrifugation
was carried out to remove larger particles, which were
then filtered using 0.2 pm syringe filters and used for
sample dilution and EV isolation. The culture medium
was then subjected to double centrifugation. Initially, the
diluted samples were centrifuged at 400 x g for 10 min
at 4 °C to remove dead cells and debris, and the col-
lected supernatants were further centrifuged at 2000 x g
for 10 min to remove apoptotic bodies. Finally, EV isola-
tion was performed using qEVsingle size exclusion col-
umns. Fractions were collected and pooled as EVs were
eluted in these fractions. The size and concentration of
EVs in the pooled fractions were determined using a
nanoparticle tracking analyzer.

Burkova et al. [109] reported on the methods for isola-
tion, purification, and identification of exosomes from
the placenta. The human placenta is a highly specialized
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organ that connects mother and fetus organisms, and it
protects, nourishes, and regulates the growth of the em-
bryo. Placenta extract preparations were obtained from
total placentas. Exosomes were isolated from the pla-
centa using various methods. Supernatants were sub-
jected to sequential centrifugation twice at 10,000 x g
for 40 min at 4 °C and once for 16,500 x g for 20 min,
and the supernatant was filtered through a 0.22-pm fil-
ter. The filtered supernatant was ultracentrifuged at
100,000 x g for 2 h. After the first centrifugation, the
pellet was resuspended in 8 mL of TBS. The resus-
pended pellet was ultracentrifuged twice at 100,000 x g
for 2 h. The precipitate was resuspended, filtered
through a 0.1-pm filter, and purified further using gel fil-
tration on Sepharose 4B columns. Exosomes derived
from placentas underwent various purification steps.
Transmission electron microscopy revealed the aggrega-
tion of exosomes, microparticles, and amorphous pro-
tein [109]. The isolated exosomes contained the typical
surface markers CD81, CD63, and tetraspanins.

EVs have been isolated and characterized from human
blastocoel fluid (BF), as described previously [34]. BF
samples were collected from human embryos on the
fifth day of development from patients undergoing IVF
cycles. Exosomes were isolated from BF, and morpho-
logical and molecular characterizations were performed
using various analytical techniques, such as scanning
electron microscopy (SEM) and nanoparticle tracking
analysis (NTA). SEM observation revealed vesicles of
spherical shape with an average diameter of 75+ 3 nm
and full width at half maximum (FWHM) of 38 + 8 nm,
compatible with exosome size [34].

Simon et al. [33] reported the isolation, identification,
and characterization of EVs from mouse embryos. Em-
bryos from 10 animals were used for the identification
and phenotypic characterization of EVs using electron
microscopy and immunogold. Embryos were collected
from conditioned media at day E4.5 and centrifuged at
low speed (300 x g, 10 min) to remove larger debris.
The resulting supernatant was centrifuged at 2000 x g
for 10 min to recover apoptotic bodies, as previously de-
scribed [110]. It was subsequently ultracentrifuged at
185,000 x g for 70 min in a P50A3 Hitachi rotor (Hita-
chi, Tokyo, Japan) to collect non-apoptotic EVs (naEVs)
that included MVs and exosomes in the same fraction.
TEM images revealed the presence of MVBs in the cyto-
plasm of murine oocytes. The presence of MVBs was
also observed in the blastomeres at different embryonic
developmental stages (E2.5 and E3.5), migrating from
the cytoplasm to the plasma membrane where their con-
tent was secreted outwards through the zona pellucida,
and larger vesicles were observed in the intercellular
space. At the blastocyst stage (day E4.5), the secretion of
vesicular  structures was observed both in the

(2022) 13:62

Page 6 of 23

extracellular medium through the zona pellucida, as well
as in the blastocoel cavity.

EVs as mediator and messengers in reproductive
biology

Exosomes play a significant role in the transmission of
specific cargo molecules in the reproductive tract to
modulate transcription and translational activity, granu-
losa cell proliferation and differentiation, cumulus ex-
pansion, gametogenesis, normal follicular growth, oocyte
maturation, fertilization rate, embryo development,
blastocyst formation and implantation, pregnancy out-
comes, and fertility (Fig. 2). Human reproductive sys-
tems are highly dynamic and have well-characterized
stages. EVs are involved in the intercellular communica-
tion at each stage of the reproductive system in both the
male and female reproductive tracts. EVs are associated
with reproductive biology and have been identified in
different fluids, such as prostatic and epididymal fluid,
seminal fluid, follicular fluid, oviductal fluid, cervical
mucus, uterine fluid, amniotic fluid, and breast milk, as
well as the originating tissues [9, 111-118]. EVs are key
regulators of different reproductive processes, such as
sperm and ovum maturation, coordination of capacita-
tion/acrosome reaction, prevention of polyspermy, endo-
metrial embryo crosstalk, and embryo development
[119]. EVs are released by extravillous trophoblasts
(EVTs). The syncytiotrophoblast (STB) is considered to
be the main site of EV generation, and these EVs play
significant roles in immune modulation, either for innate
or adaptive responses [120]. EVs derived from the amni-
otic fluid are responsible for inflammatory and pro-
coagulant activities [121]. EV-derived breast milk is
involved in bone formation, immune modulation, and
gene expression regulation, especially for long non-
coding RNAs [122, 123]. In vitro and in vivo studies sug-
gest that embryo-derived EVs act as modulators of
embryo-to-embryo communication in polytocous species
[39, 106]. EVs mediate communication between the
inner cell mass and trophectoderm. EVs secreted by bo-
vine embryos can be taken by zona-intact bovine em-
bryos, increase blastocyst rates at d 7 and 8, and
improve embryo quality, with significantly decreased
apoptotic cells [124]. Conceptus-derived EVs are found
in the cytoplasm of luminal epithelial cells and some
glandular epithelial cells. These EVs can target the uter-
ine epithelium and serve as a novel form of cell-to-cell
communication during the establishment of pregnancy
[19]. EVs derived from cervical mucus have sialidase ac-
tivity, which is involved in modifying highly glycosylated
mucus to favor spermatozoa access to the uterine cavity
and tubes [113]. Bovine follicular fluid—derived exo-
somes and cumulus—oocyte complexes from mice and
cattle revealed that follicular EVs are taken up by
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Fig. 2 Multifunctional roles of EVs in male and female reproduction organs. Male and female reproductive organ-derived EVs may be involved in
sperm and oocyte maturation, sperm-oocyte fusion and also increase embryo viability and pregnancy efficacy

cumulus cells, promoting both cumulus expansion and
related expansion of genes [13]. Several studies have
shown that exosomes are released from various parts of
the female reproductive tract, including the uterus, ovi-
duct epithelium, endometrium, preimplantation em-
bryos, and placental trophoblastic cells [9, 12, 125, 126].
Exosomes play an important role in intercellular com-
munications, which is essential for preconception and
post-conception, and also serve as a marker for preg-
nancy and pregnancy-associated pathologies in humans
[127, 128]. Prattichizzo et al. [129] reported that aged-
cell-derived exosomes are more proinflammatory than
younger cell-derived ones. A mouse study suggested that
serum-derived exosomes from young mice were able to
mitigate inflammation in both the central and peripheral
nervous systems of old mice, which reduces morbidity
and mortality caused by age-related diseases [130]. Exo-
somes contain miRNAs derived from senescent cells that
initiate senescence and aging in the surrounding cells.
Exosomes contain intracellular miRNAs, such as the let-
7, miR-34a, and miR-17-92 cluster, which are involved
in regulating and developing mammalian cells [131-
134]. Exosomes play a significant role in the removal of
waste and biomolecules, which are essential for the

maintenance of intracellular proteins, RNA homeostasis,
and cellular fitness [135]. During pregnancy, exosomes
are derived from various cells and tissues, including pla-
cental trophoblasts, embryos, endothelial cells, immune
cells, and platelets, which mediate the necessary commu-
nication between maternal and fetal circulation during
pregnancy [120, 136]. Exosomes derived from the pla-
centa promote endothelial and vascular cell migration,
which is an essential step for the establishment of fetal-
maternal circulation and remodeling of uterine spiral ar-
teries [137]. Exosomes serve as signaling molecules and
are involved in the activation of signaling pathways in-
volved in the regulation of folliculogenesis, oocyte mat-
uration, ovulation, meiotic resumption, embryo
development, and fertilization rate [8, 115, 138]. Bio-
informatic analysis revealed that 14 and 5 miRNAs were
found in follicular fluid of young versus old mares, re-
spectively. Levels of miR-513a-3P, miR-181A, and miR-
375 were significantly higher in exosomes, and all these
miRNAs suppressed the TGFB pathway [139]. Exosomes
play a significant role in coordinating between the em-
bryo and uterine endometrium, which is required for
successful implantation [140, 141]. Extracellular vesicles
released from endometrial epithelium contribute to the
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transfer of miRNA and connective molecules to blasto-
cysts and endometrium, which play a significant role in
implantation and fertility outcomes [19, 141]. Exosomes
derived from ovine uterine stimulated trophectoderm cells
to proliferate and secrete interferon tau via TLR-mediated
cell signaling [12]. Placenta-derived microvesicles in the
first trimester of pregnancy indicate the role of EVs in
maternal-embryo crosstalk during pregnancy [142]. Exo-
somes released from the fetal membrane during preg-
nancy potentially transmit signals originating from the
fetus to the maternal uterus, as well as the cervix [143].

EVs are stable, versatile, cell-derived nanovesicles with
target-homing specificity and the ability to transfer
through in vivo biological barriers, and they hold prom-
ise for the development of new approaches in drug deliv-
ery [23]. EVs are capable of intercellular genetic transfer
and can facilitate new diagnostic and therapeutic tools
in the field of reproductive biology. EVs serve as poten-
tial biomarkers for disorders of reproductive organs. The
release of placental EVs is modulated by a number of
factors that arise from the placenta, and maternal blood
is the source of EVs [144]. Placental-exosomal miRNA
cargo is related to cell migration potential and inflam-
matory cytokine production. Low-oxygen tension exo-
somes decreased endothelial cell migration potential and
increased TNF-a production [145]. Placental EVs play a
significant role in infectious diseases during pregnancy.
Both total and placental-derived EVs are increased in
the plasma of pregnant women with HIV infection com-
pared with non-infected controls [145].

Effects of extracellular vesicles on placentation
and pregnancy disorders

In humans, a successful pregnancy depends on normal
placental formation, normal implantation, and develop-
ment of the placenta, which are responsible for fetal
growth and development during pregnancy. Soluble fac-
tors are involved in normal placental development
through intercellular interactions in various types of
cells, including trophoblasts, endothelial cells, immune
cells, mesenchymal stem cells (MSCs), and adipocytes
[17]. Exosomes are released from decreased insulin sen-
sitivity and glucose uptake in skeletal muscles, contribut-
ing to the pathophysiology of gestational diabetes
mellitus (GDM) [146]. Secretory levels of exosomes are
significantly higher in GDM than those in normal glu-
cose conditions [147]. Exosomes released from other
types of cells can affect placental function and are in-
volved in regulating the physiological and pathological
mechanisms of pregnancy. For example, exosomes re-
leased from adipocytes mediate placental metabolic sta-
tus and contribute to GDM [147] and are also involved
in mediating maternal metabolic changes in pregnancy
between different organs and the placenta [147].
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Concentrations of circulating placental-derived EVs in-
crease during abnormal placentation in preeclampsia
(PE) [148]. During gestational age, the level of exosomes
is increased and is involved in regulating the maternal
immune response during pregnancy [149-153]. EVs can
regulate the expression and production of different cyto-
kines during pregnancy [146, 154]. Placental EVs are be-
lieved to play a role in modulating pro-inflammatory
and anti-inflammatory states by modulating cytokine re-
lease [151]. Placental EVs inhibit maternal immunity
and promote fetal survival through the expression of
specific ~ immunoregulatory molecules  [149-153].
Placental-derived EVs contain syncytin-1, which sup-
presses the production of tumor necrosis factor alpha
(TNF-a) and interferon gamma (IFN- y), which are in-
flammatory regulators in early pregnancy [155]. Placen-
tal EVs induce the release of proinflammatory cytokines
from endothelial cells, including TNF-a, macrophage in-
flammatory protein (MIP)-1a, interleukin (IL)-1«, -6, -8,
and -1B, and activate macrophages to release proinflam-
matory IL-1B. The activation of phagocytic cells regu-
lates the maternal immune response to maintain a
normal pregnancy and protects against infection [156,
157]. Circulating EVs induce the formation of pro-
inflammatory environments and endothelial cell dys-
function in the placenta, and contribute to the formation
of pro-inflammatory environments and endothelial cell
dysfunction in the placenta [18]. Circulating EVs also fa-
cilitate the prediction of the physiological and patho-
logical conditions of the cell of origin. EVs derived from
trophoblasts increase the migration of monocytes
through the production of IL1B, IL6, SERPINE1, and
colony stimulating factor 2 (CSF2) [157]. EVs derived
from PE patients inhibit the proliferation of macro-
phages and the expression of inflammatory cytokines,
such as IL-12 and TNF [158]. Maternal plasma-derived
EVs contain miR-548c-5p, which causes inflammatory
responses and PB in pregnant mice [159]. A mouse
study revealed that EVs derived from injured placenta
induce PE-like symptoms, such as hypertension and pro-
teinuria, by inducing endothelial injury, vasoconstriction,
and hypercoagulation [160]. The secretary level of exo-
somes are significantly are higher in compared to nor-
mal glucose condition [161].

Role of extracellular vesicles in normal pregnancy and
pregnancy-related diseases

EVs are playing an important role in intercellular com-
munication through the transfer of a wide spectrum of
bioactive molecules, contributing to the regulation of di-
verse physiological and pathological processes, and me-
diating fetal-maternal communication across gestation.
EVs play a significant role in maternal-embryo inter-
action within the human uterine microenvironment,
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promoting implantation, the earliest and essential step
for successful pregnancy. Studies have suggested that
exosomes can be transferred between the fetus and ma-
ternal bodies [159]. EVs potentially regulate multiple
processes of pregnancy, such as implantation, migration,
and invasion of trophoblasts, and cellular adaptations to
physiological changes (Fig. 3) [120, 162, 163]. Alterations
in EVs are critically involved in pregnancy-related dis-
eases. Moreover, EVs have shown great potential as bio-
markers for the diagnosis of pregnancy-related diseases.
The concentration, composition, and bioactivity of EVs
can regulate pregnancy-related diseases [144, 164]. EVs
are playing significant role in maternal-embryo inter-
action within human uterine microenvironment, pro-
moting implantation, an earliest and essential step for
successful pregnancy [161, 165]. Exosomes from endo-
metrial epithelial cells (ECs) were treated with estrogen,
or estrogen, and progesterone (EP); EP-treated ECs have
exosomes that contain proteins associated with embryo
implantation and extracellular matrix remodeling [26].
MicroRNAs (miRNAs) play a potential role as mediators
of embryo-endometrium crosstalk in the implantation
process [166, 167]. The interaction between EVs and im-
mune cells modulates pregnancy, tolerates the growing
fetus, and maintains its normal functions [168, 169]. EV-
derived heat shock protein family E member 1 (HSPE1)
promotes Treg differentiation from CD4" T cells and
Treg cell expansion [170]. Exosomes derived from
macrophage-derived exosomes increase the release of
pro-inflammatory cytokines, such as IL-6, IL-8, and IL-
10, potentially facilitating protective placental immune
responses during pregnancy [171]. Exosomes are derived
from primary human placental trophoblasts containing
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chromosome 19 miRNA cluster (C19MC) miRNAs that
attenuate viral replication in recipient non-placental cells
by upregulating autophagy [172]. EVs are involved in
metabolic homeostasis and are associated with metabolic
regulation during pregnancy. Placental-derived exosomes
are able to increase insulin-induced glucose uptake in
the skeletal muscle of diabetic patients, suggesting that
placental exosomes may engage in changes in insulin
sensitivity in normal pregnancies [146]. Exosomes from
adipose tissue (AT) of pregnant women with normal
glucose tolerance affect the expression of glucose
metabolism-related genes in placental cells [173]. Exo-
somes from extravillous trophoblast cells cultured under
low oxygen tension increased TNFa expression in
HUVECs [174]. Exosomal miR-141 derived from fetal
trophoblasts induces T cell proliferation, indicating that
placental EVs regulate maternal immune cells and cause
immune disorders during pregnancy [175-177]. Exo-
somes from GDM pregnancies increase the release of
pro-inflammatory cytokines from ECs, including GM-
CSF, IL-6, and IL-8 [161]. Preterm labor (PTB)-enriched
exosomes are associated with inflammatory molecules
that affect the labor process [178].

Role of extracellular vesicles in mother and embryo cross-
communication

EVs play a significant role in paracrine communication
between the mother and embryo [105] and are involved
in synaptic plasticity, deliver neurotransmitter receptors,
and modulate tissue regeneration [179]. EVs participate
in regulating immune responses, particularly triggering
the adaptive immune response and suppressing inflam-
mation [180]. A previous study reported that EVs play
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important roles from preconception, gamete maturation
to implantation and throughout pregnancy [141]. Hu-
man uterine fluid-derived EVs contain a specific subset
of miRNAs that are not detectable in maternal cells by
the human endometrial epithelial cell line ECC1 [11].
Similarly, the uterine fluid of pregnant sheep contains
EVs positive for CD63 and HSP70, as well as small
RNAs and miRNAs [181]. Exosomes derived from hu-
man endometrial epithelial cells are subject to steroid
hormonal regulation by estrogen and progesterone and
vary with the menstrual cycle [26]. Internalization of
miR30d by mouse embryos via the trophectoderm in-
creased the overexpression of adhesion-related genes,
Itgh3, Itga7, and CdhS, and also increased embryo adhe-
sion; conversely, miR-30d deficiency results in reduced
implantation rates and impaired fetal growth [182]. Het-
erogeneous nuclear ribonucleoprotein C1 (hnRNPC1) is
involved in cell-to-cell communication, and previous
studies suggest that maternal endometrial miRNAs act
as transcriptomic modifiers of the preimplantation em-
bryo [183, 184]. Exosomes released from human endo-
metrial epithelium transferring molecular cargoes
promote implantation to the blastocyst and endomet-
rium [11]. A bovine model study demonstrated that
embryo-derived EVs improved the growth and viability
of cloned bovine embryos and increased implantation
rates and full-term calving rates [185]. Mouse studies
suggest that microinjections of 3-5 days old blastocysts
with embryonic stem (ES) cell-derived EVs before trans-
fer into surrogate mothers significantly increased the
likelihood of implantation. In addition, ES cell-derived
EVs improve the capability of TE cells within the blasto-
cyst to migrate into the uterus and promote blastocyst
implantation [20]. EVs from day 17 of pregnancy induce
apoptosis of immune cells and primary endometrial epi-
thelial cells (EECs) through increased expression of
apoptosis-related genes, including BAX, CASP3, and
TNFA, which are required for conceptus implantation,
during which a portion of the endometrial epithelium
disappears [186].

Role of microRNAs in embryo implantation

miRNAs are small non-coding RNAs that function in
RNA silencing and post-transcriptional regulation of
gene expression. They regulate genes expression in
blood plasma and serum, as well as other body
fluids, and are involved in intercellular communica-
tion [187-189]. miRNAs are secreted by all types of
cells, and the concentration of extracellular miRNAs
is associated with physiological and pathological con-
ditions of the body [190, 191]. Embryo implantation
is a crucial step in the establishment of pregnancy in
mammals and has a profound effect in reproductive
efficiency. The process of implantation is under the
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strict regulation of ovarian hormones, estrogen, and
progesterone [192]. Several molecules, such as cyto-
kines, chemokines, growth factors, lipids, and recep-
tors also participate in the regulation of implantation
through autocrine, paracrine, and juxtacrine path-
ways [192]. Several studies have reported that miR-
NAs are involved in the regulation of oogenesis,
fertilization, implantation, and placentation. Dysregu-
lation of miRNAs causes reproductive disorders,
such as polycystic ovarian syndrome and endometri-
osis [193, 194]. miRNAs are associated with various
types of proteins such as the AGO family, nucleo-
phosmin 1, bound to lipoproteins and apoptotic bod-
ies [73, 195, 196]. These enzymes are involved in
miRNA biosynthesis pathways, such as DICER;
AGO?2 leads to embryonic death around gastrulation,
suggesting an important role of miRNAs in early
embryonic development [197-199]. Regulation of the
expression of Dnmt3a/b by miR-29b causes disrup-
tion of DNA methylation, which leads to early em-
bryonic developmental blockade in mice [200].
Inhibition of this miRNA significantly reduces mor-
ula and blastocyst formation [201]. Liu et al. re-
ported that 45 miRNAs were differentially expressed
between dormant and activated mouse embryos; par-
ticularly, let-7a levels were highly expressed in dor-
mant embryos and inhibited the expression of Dicer
and prevented embryo implantation [202, 203]. A
porcine embryo study suggested that there was a
lower expression of miR-24 in the blastocyst stage
than in in vitro fertilized (IVF) embryos [204]. An-
other study suggested that high level expression of
miR-24 inhibited the development of embryos to the
blastocyst stage [36]. Differential expression of miR-
NAs was observed between IVF bovine blastocysts
and degenerate embryos, and relatively higher levels
of miR-181a2, miR-196a2, miR-302¢, and miR-25
were found in degenerate embryos [35]. Variable ex-
pression patterns of miRNAs were observed in hu-
man endometrial fluid secreted by the endometrial
glands at different stages of the menstrual cycle
[182]. Placenta-specific miRNAs, such as miR-515-
3p, miR-517a, miR-517¢, miR-518b, miR-526b, and
miR-323-3p, are widely expressed in the blood
plasma of pregnant women [205, 206]. A cow model
study demonstrated that circulating EV-derived
miRNA is not only able to identify pregnancy, but
can also distinguish between successful implantation
and embryonic mortality at the early stage of preg-
nancy [207]. EVs derived from bovine follicular fluid
contain miRNAs that reflect the stage of the estrus
cycle and can modulate cumulus cell transcription
during in vitro maturation [208]. Murine oviductal
tract EVs (oEVs) contain miR-34c-5p, which is
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transferred to the sperm heads, promoting the first
cleavage in the zygote and controlling embryonic de-
velopment [209]. EVs secreted by donor oviductal
cells increase birth rates after embryo transfer in
mice due to decreased apoptosis and improved cellu-
lar differentiation in embryos [210].

Role of EVs in animal reproduction

Cell communication is a crucial process for several mo-
lecular processes involved in female reproduction. EVs
have been identified as one of the key players in regulat-
ing temporal sequences, spatial interaction, and cell-cell
signaling in all events in sexual reproduction [211]. EVs
have been observed in seminal fluids to modulate sperm
capacitation in humans [212] and pigs [213] and also in-
fluence female physiology by modulating immune-
related gene expression in the porcine endometrium
[214]. EVs from avian uterine fluid may play an essential
role in preserving sperm function [215]. EV-mediated
molecules are produced by somatic cells and germ cells
present in follicular fluids (FF). EVs derived from FF
have been used in various animal models, such as horses
[8], humans [216] and cows [217]. Follicular fluid com-
prises a heterogeneous EV population secreted by granu-
losa, cumulus, and somatic follicular cells with functions
related to the control of steroidogenesis [8, 216, 217].
EVs play a significant role in reproductive processes as
intercellular communicators and are found in follicular
fluid [217], oviductal fluid [9] and secreted by embryos
in culture media [35-37]. Intercellular communication
within the microenvironment of the ovary is essential
for oocyte and follicle development. EVs are secreted by
follicular cells and are found in follicular fluid, which
transmit information between cells [217]. Sohel et al.
[125] reported that the majority of miRNAs from follicu-
lar fluid were in the exosome fraction, and exosome up-
take by follicular cells was associated with an increase in
miRNA levels in these cells [125]. Exosomes derived
from follicular fluid regulate TGF-P signaling pathways;
they have been shown to regulate ACVRI and ID2 in
granulosa cells in vitro by transferring mRNA, protein,
and miRNAs in follicular development of granulosa cells
[218]. EVs are a component of the oviductal fluid that
favors oocyte and embryo quality [14]. Proteomic ana-
lysis revealed that EVs secreted proteins, such as ovi-
ductal glycoprotein (OVGP), heat shock protein A8
(HSPAS8), and myosin 9 (MYH9) by bovine oviduct epi-
thelial cells (BOECs), which are involved in fertilization,
early pregnancy development, and zona pellucida matur-
ation [219, 220]. Embryos treated with EVs from BOEC
culture media induced an increased number of total cells
and better survival rate after vitrification compared to
embryos cultured without EVs [14]. Oviductal fluid-
derived EVs from the isthmus resulted in the greatest
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bovine embryo survival rate after vitrification. AQP3
(Aquaporin 3) was upregulated in embryos supple-
mented with EVs from the isthmus compared to em-
bryos  supplemented with FCS only [221].
Supplementation of exosomes secreted by somatic cell
nuclear transfer (SCNT) embryos in the culture medium
of SCNT embryos increased blastocyst rate, total cell
numbers, ratio of ICM/TE, and transcript levels of OCT-
4 in comparison to SCNT embryos without supplemen-
tation [185]. Exosomes present in the culture medium
are essential for embryo development, and changes dur-
ing embryo development caused by culture medium re-
placement may be repaired by exosome supplementation
[185]. Progesterone treatment increased the number of
EVs in the uterine lumen compared to that in the P4 re-
ceptor antagonist group [222]. EVs derived from porcine
trophectoderm induce aortic endothelial cell prolifera-
tion, which may stimulate angiogenesis [223]. Further-
more, porcine trophectoderm and aortic endothelial cell
EVs have miRNAs predicted to modulate angiogenesis
and placental development pathways, suggesting that
these EVs may play an important role in the communi-
cation between the conceptus and maternal endomet-
rium, influencing the establishment of pregnancy [223].
Small extracellular vesicles (SEVs) released from endo-
metrial epithelial cells (EECs) activate signaling pathways
in trophoblasts, thus promoting migration and invasion,
which affect implantation rates. These sEVs serve as
novel intercellular communication mechanisms during
embryo implantation [224].

The success of pregnancy depends on the molecular
dialogue between the embryo and the female repro-
ductive tract that starts at the oviduct and continues
until the placenta is formed. Cytokines and growth
factors, such as interleukin-13 (IL-1p), heparin-
binding epidermal growth factor (HB-EGF), integrins,
and leukemia inhibitory factor (LIF), act synergistic-
ally in embryo-maternal crosstalk. For example, the
expression of epithelial cell adhesion proteins in-
creases endometrial receptivity by IL-1 [225] and
stimulates angiogenesis to promote embryonic growth
[226]. HB-EGF receptors on the surface of the em-
bryo and endometrium facilitate implantation and
promote the development of blastocyst [227, 228].

Roles of extracellular vesicles in the male reproductive
system

EVs are important regulators of the biological function
of sperm and seminal fluid in normal and pathological
reproduction [105]. EVs of the male reproductive tract
are a product of a diverse population of cells, and are
conserved, abundant, and carry a complex payload of
regulatory elements that support sperm function, which
is essential for effective functions of female reproductive
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tract biology after mating (Fig. 4) [229, 230]. Epididymo-
somes are a heterogeneous population of EVs that are
produced by epithelial cells lining the epididymis and
have an average size between 50 and 250 nm [231, 232].
They play a significant role in mediating post-testicular
sperm maturation and storage across mammalian spe-
cies. They can tether and transiently fuse with sperm to
facilitate protein transfer, and are also involved in sperm
maturation and successful fertilization [233-235]. Epidi-
dymosomes contain sncRNA cargo and are directly im-
plicated in the transfer of microRNAs (miRNAs) and
transfer RNA-derived RNA fragments (tRFs) to epididy-
mal sperm [236-239]. Epididymosomes of mice,
humans, and bulls contain an abundance of antioxidant
enzymes, which play an important role in the elimin-
ation of defective sperm in humans, rats, and cattle
[240-242]. Epididymosomes also play a significant role
in sperm maturation and storage, and cargoes of epidi-
dymosomes have been shown to influence the female re-
productive tract [243, 244]. Seminal fluid EVs (SFEVs)
isolated from vasectomized men lack epididymosomes
and show reduced capacity to support motility, capacita-
tion, and initiation of the acrosome reaction, compared
to the SFEV pool of intact men [245]. The interactions
between epididymosomes and sperm are potentially in-
volved in the female reproductive tract, which assists
sperm in attaining full functional maturity [245].

SFEV is not only involved in modulating sperm func-
tion, but also has an impact on the immune

environment within the female reproductive tract [230].
The interaction between seminal fluid EVs and the fe-
male reproductive tract of epithelial cells initiates an in-
flammatory response, similar to the responses observed
following exposure to seminal fluid [214, 246—249]. EVs
of the reproductive tract are potentially involved as fun-
damental regulators of reproductive success by regulat-
ing male gamete function and influencing the female
reproductive tract during pregnancy. However, alter-
ations in EV composition not only regulate impaired fer-
tility, but could also influence fetal development and
impart long-term consequences for offspring health.
Human seminal plasma is a complex fluid produced
by secretions from several glands of the male genital
tract and male gametes consist of rich amount of EVs
[250]. EVs are synthesized by the prostate, as well as by
the epididymis, and even by the testis. EVs are classified
based on testicular, prostatic or epididymal localization.
EVs from seminal plasma involved in various aspects of
male fertility, improving sperm function by regulating
the timing of sperm capacitation, inducing acrosome re-
action, stimulating sperm motility enabling them to
reach the ovocyte [251]. Myelinosomes are secreted by
Sertoli cells and secretory organelles loaded with specific
cargoes and capable of leaving the cell in their entirety,
in the form of extracellular vesicles [252]. Prostasomes
are nanosized exosomes secreted by the acinar lumen of
prostate epithelial cells. These prostasomes contain pro-
teins, lipids and nucleic acids. Prostasomes contains rich
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level of cholesterol and sphingomyelin, with a particu-
larly high cholesterol/phospholipid ratio [253]. Prosta-
somes play significant role in controlling capacitation
and the acrosome reaction and also involved in prevent-
ing premature capacitation of spermatozoa and prema-
ture acrosome reaction. The prostasomal membrane is
enriched in cholesterol, which contributes to its stability
in the acidic vaginal environment [212]. Bovine model
studies demonstrated that epididymosomes contain sev-
eral proteins that are involved in the acquisition of
sperm mobility, fertilisation capacity and protection
against oxidative stress. The content of these vesicles
also depends on the region of the [234, 254] epididymis.
EVs are secreted by testis which contains sperm RNA is
an important epigenetic player in the early development
of the embryo and the health of the offspring [255].
Altogether, these findings suggest that the heteroge-
neous population of EVs present in seminal plasma is
known to influence sperm functions [141, 256].

Role of EVs in reproductive and therapeutic medicine

EVs play an important role in both physiological and
pathological processes as biomarkers of fertility, repro-
ductive cancer, embryo quality, placenta quality, and
early abortion [211]. The circulating level of EVs de-
pends on the physiological level of tissues, serum or
other biological fluids, animal model, time, and type of
disease. In particular, EVs regulate a variety of physio-
logical processes. Cargoes present in EVs are protected
from degradation and can be used as biomarkers for
non-invasive cancer diagnosis in various types of repro-
ductive cancers [188, 257, 258]. Physiological and patho-
logical conditions influence EV concentration, cargo,
and function. Several miRNAs have been established as
biomarkers in the ovarian follicle, which create a suitable
microenvironment for the growth, maturation, and
fertilization of oocytes [259, 260]. For example, expres-
sion of miRNA-375 in granulosa cells and oocytes facili-
tates follicular growth proliferation, spread, and
apoptosis of cumulus cells, whereas overexpression of
miR-375 inhibits the ability to proliferate, increases the
apoptosis rate of cumulus cells in cows, and suppresses
estradiol production and follicular development in por-
cine granulosa cells [261-264]. Placenta-derived EVs can
induce differentiation due to the presence of placenta-
specific proteins (e.g, PLAP4) and miRNAs (e.g,
chromosome 19 miRNA cluster) that are exclusively
expressed in the placenta and serve as biomarkers of
maternal-fetal health and evolution and for diagnosis of
preeclampsia [265-267]. EVs show immense therapeutic
potential in various diseases, including reproductive can-
cers, such as ovarian cancer. For example, amniotic de-
rived EVs have been used to treat endometritis in mare
to attain successful pregnancy [268]. Zhang et al. [269]

(2022) 13:62

Page 13 of 23

demonstrated that transplantation of menstrual blood-
derived stromal cells (MenSCs) derived sEVs safely and
effectively promoted the regeneration of endometrial
glands and blood vessels, and improved fertility in ITUA
rats. Furthermore, treatment with MenSCs and
MenSCs-sEVs increased BMP7 levels and activated the
SMAD1/5/8 and ERK1/2 pathways in vivo, thereby alle-
viating endometrial fibrosis by inhibiting TGEp1/
SMAD3 signaling.

EVs are serving as signaling molecules to target various
types of reproductive cells

EVs are serving as intercellular signaling molecules are
considered imperative for the regulation and accom-
plishment of different physiological events including cel-
lular proliferation and differentiation, gametogenesis,
fertilization, and embryonic development [141]. The suc-
cess of pregnancy greatly depends on gametogenesis,
fertilization, and an adequate uterine environment for
embryonic development [270]. These highly complex
processes greatly rely on the crosstalk between the gam-
etes and the different segments of the reproductive tract.
EVs are regulating diverse signaling pathways in target-
ing the cells [271]. EVs secreted by the male reproduct-
ive tract including epididymosomes and prostasomes are
significant role in the maturation process of sperm [272,
273]. EVs derived from the uterine fluids of murine ex-
hibited the expression of certain sperm essential proteins
including spermadhesionmolecule 1 (SPAM1) and
plasma membrane calcium pump (PMCA4) [116, 274].
Oviductosomes contains cargoes including proteins aV
integrin, CD9 tetraspanin, heat shock proteins, lactad-
herin oviductal specific glycoprotein (OVGP), lipids,
SPAM1, RNAs, and miRNAs are involved in acrosome
reaction, increases sperm viability and motility, reduces
the incidence of polyspermy through zona hardening, in-
duces the phosphorylation of sperm-associated proteins
during capacitation, and modulates fertilization,
fertilization and early embryo development [275-281].
Various type of factors including insulin, transforming
growth factor-beta (TGFB) and wingless/Int (WNT) sig-
naling members [282, 283] growth factors [284] and hor-
mones [285] are involved in both the folliculogenesis
and initiation of different signaling pathways. Tetraspa-
nins including CD9 and CDS81 involved mediating the
oocyte-sperm fusion process and exclusively CD81 may
facilitate the transfer of CD9 from the oocytes to the
sperm plasma membrane [286]. Oviduct-derived EVs are
involved in embryonic development through mediating
the embryo—maternal interactions during early embry-
onic development, leading to improved embryo quality
and successful pregnancy [287]. Endometrial-epithelial
derived EVs not only facilitate endometrium-embryo
crosstalk but also help in the implantation of the
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embryo. EVs are derived from trophoblasts carry mole-
cules such as miRNA and significant proteins are in-
volved in the normal placental function and
angiogenesis within the trophectoderm. Further, the
trophectoderm derived EVs penetrate and stimulate the
proliferation of maternal endothelial cells [157]. High
concentrations of p38 MAPK in EVs influencing partur-
ition and are involved in in inflammatory responses, cell
proliferation, apoptosis, and stress induced signaling
[288]. All these findings suggest that all the functional
molecules carried by the EVs potentially modulate differ-
ent reproductive events such as gametes maturation,
fertilization, and blockage of polyspermy, development,
and implantation of the embryo, fetal development, and
parturition.

Conclusion and future perspectives

Extracellular vesicles (EVs) are a heterogeneous popula-
tion of cellular couriers and membraned structures se-
creted by cells that contain various biomolecules, such as
proteins, lipids, RNAs, and DNAs, which can serve as long
distance messengers and play a significant role in cellular
communication and cell function. EVs differ in size and
function. EVs have various subsets, including exosomes,
microvesicles, and apoptotic bodies. These vesicles play a
significant role as key regulators of human reproduction.
EVs are located in various body fluids that are critical for
reproduction, such as follicular fluid, endometrial fluid,
semen, and Fallopian tubal fluid [105, 141]. EVs can carry
significant phenotype-altering cargo, such as transcription
factors and microRNAs. EVs can serve as excellent car-
riers for drug delivery because of their ability to transfer
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their contents to target cells. Several studies have docu-
mented that EVs carrying functional molecules control
different reproductive events, such as gamete maturation,
fertilization, blockage of polyspermy, embryo development
and implantation, fetal development, and parturition. The
concentration of EVs determines the physiological or
pathological state of different reproductive events and
may be used as markers for pregnancy term, fetal growth,
placental function, and diagnosis of different pathological
conditions. EV-mediated cellular communication facili-
tates the enhancement of diagnostics and therapeutics for
fertility-related issues, pregnancy-associated abnormalities,
and pregnancy loss. EV communication may provide a
foundation for a better understanding of the conception
and implantation processes. EVs are released from the pla-
centa into the maternal circulation and have a wide range
of functions to regulate immunologic responses to preg-
nancy and to establish maternal vascular function (Fig. 5).
Placenta-derived EVs contain various miRNAs and pro-
teins that play a role in the maintenance of pregnancy in
the trophoblast and placental microenvironment. EVs
may be utilized as disease biomarkers and drug delivery
systems, which provide the opportunity for diagnostic po-
tential with reduced invasiveness in a targeted manner.
EVs play important roles in regulating cellular functions
and contributing to pregnancy-related diseases. The po-
tential diagnostic value of EVs in pregnancy depends on
the concentration and content of circulating EVs. EVs
support male gamete function and interact with female re-
productive tract cells, are eventually involved in preg-
nancy, and are potentially involved as regulators of male
reproductive success.
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To improve the physical and  molecular
characterization, action, and functions of EVs, there is a
need to develop more reliable isolation methods and
more sensitive technologies. Although data have demon-
strated the potential role of EVs in reproductive physi-
ology and pathology, further investigations are required
in this area. Furthermore, it is necessary to understand
the molecular mechanism by which EVs regulate key
events in pregnancy, which may help elucidate how
maternal-fetal communication is established in both
normal and pathologic conditions. Detailed studies are
required to understand the physiological activity of EVs
during early pregnancy, which could open a new avenue
to overcome abnormal placentation and pregnancy dis-
orders as well as to characterize differences in the cargo
of EVs between pregnant and non-pregnant or
embryonic-mortality animals, which ultimately improves
fertility rates in agriculturally important animals. In
order to improve fertility, it is important to increase our
knowledge regarding the biology of EVs in reproductive
tissues, which can create a better environment to pro-
duce embryos in vitro and consequently generate health-
ier pregnancies in animals and humans. Although there
is considerable evidence that EVs serve as natural thera-
peutic agents that are able to maintain reproductive suc-
cess, the progress of reproductive and obstetric-related
disorders is still in its infancy, and further investigations
that utilize homogeneous and human-specific material
are needed. Hence, comprehensive studies on the mo-
lecular mechanisms and functional roles of EVs in both
male and female reproductive systems are required to
decipher the relationship between EVs from various tis-
sues and the entire reproductive process. More studies
are required to provide insight into the functions of EVs
in pregnancy and to apply EVs to the diagnosis, moni-
toring, and treatment of pregnancy-related diseases.
These studies would provide significant knowledge re-
garding reproductive mechanisms and contribute to the
development of new therapeutic strategies to treat vari-
ous reproduction-related diseases. It is necessary to ad-
dress the knowledge gaps in male gamete quality and
the composition of seminal plasma on pregnancy out-
comes and offspring health.
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