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Abstract

Background: As a ubiquitous reversible epigenetic RNA modification, N6-methyladenosine (m6A) plays crucial
regulatory roles in multiple biological pathways. However, its functional mechanisms in sex determination and
differentiation during gonadal development of chicken embryos are not clear. Therefore, we established a
transcriptome-wide m6A map in the female and male chicken left gonads of embryonic day 7 (E7) by methylated
RNA immunoprecipitation sequencing (MeRIP-seq) to offer insight into the landscape of m6A methylation and
investigate the post-transcriptional modification underlying gonadal differentiation.

Results: The chicken embryonic gonadal transcriptome was extensively methylated. We found 15,191 and 16,111
m6A peaks in the female and male left gonads, respectively, which were mainly enriched in the coding sequence
(CDS) and stop codon. Among these m6A peaks, we identified that 1013 and 751 were hypermethylated in females
and males, respectively. These differential peaks covered 281 and 327 genes, such as BMP2, SMAD2, SOX9 and
CYP19A1, which were primarily associated with development, morphogenesis and sex differentiation by functional
enrichment. Further analysis revealed that the m6A methylation level was positively correlated with gene
expression abundance. Furthermore, we found that YTHDC2 could regulate the expression of sex-related genes,
especially HEMGN and SOX9, in male mesonephros/gonad mingle cells, which was verified by in vitro experiments,
suggesting a regulatory role of m6A methylation in chicken gonad differentiation.

Conclusions: This work provided a comprehensive m6A methylation profile of chicken embryonic gonads and
revealed YTHDC2 as a key regulator responsible for sex differentiation. Our results contribute to a better
understanding of epigenetic factors involved in chicken sex determination and differentiation and to promoting the
future development of sex manipulation in poultry industry.
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Background

Sex manipulation technologies are of great significance
to the production performance and economic benefit of
livestock [1]. During the production of laying hens, at
least seven billion day-old male chicks are culled every
year worldwide, which raises cost and animal welfare
concerns [2—4]. Research on the mechanisms of sex de-
termination and differentiation in chickens, especially
during the embryonic stage, will contribute to achieving
early sex manipulation of chickens and be beneficial for
chicken breeding and resource protection strategies [5].
In addition, chicken embryonic gonadal differentiation is
also an excellent model for studying key factors of verte-
brate sex determination [6] and human sexual develop-
ment disorders [7, 8]. Although many investigations
have focused on chicken sex determination and differen-
tiation [9-20], the mechanisms underlying gonadal dif-
ferentiation are still elusive.

The sex determination and differentiation of chickens
during the embryonic stage is how the gonad develops
into the testis or ovary. The process is well-known to be
affected by the regulation of genetic factors and hor-
mone levels [10, 12, 18, 20]. Unlike mammals, homo-
gametic males (ZZ) produce testes, and heterogametic
females (ZW) develop ovaries in birds. Considering that
no female sex-determining genes have been found on
the W chromosome [21], multiple studies have recog-
nized that the Z chromosome gene doublesex and mab-
3-related transcription factor 1 (DMRT1) is the key fac-
tor for the formation of testes [12, 16, 20]. The key con-
served Sertoli cell differentiation factor (SOX9) may be
induced and activated by high levels of DMRT1 in males
(ZZ) and initiate testicular differentiation during embry-
onic development [16, 20, 22]. Due to the low dosage of
DMRT]1, the FOXL2 signaling pathway in females is ac-
tivated [16, 20]. Estrogen is a key factor in determining
female sex, and the blockade of estrogen could directly
cause female embryonic gonad masculinization [9-11,
18, 20]. Although several genes responsible for sex deter-
mination and differentiation were identified, multiple
pieces of evidence indicate that epigenetic modification
is involved in this process [23—30]. The noncoding RNA
transcribed from the male hypermethylated region
(MHM) has been suggested to be associated with
chicken gonadal development and differentiation [24, 25,
28-30]. Temporarily feminized gonads maintain tran-
scriptomic and epigenetic memories of genetic sex [23].
Therefore, in-depth exploration from epigenetic aspects
would provide novel insights into sex differentiation.

N6-methyladenosine (m6A) is an important posttran-
scriptional mRNA modification discovered in the 1970s
and mainly regulates mRNA metabolism, including RNA
stability, translation, RNA splicing, and transport [31-
38]. In mammals, multiple studies have shown that m6A
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modification plays essential roles during spermatogen-
esis [39-43]. Knockout of Mettl3, Mettl14 and Ythdc2 in
mice inhibited gonadal development and resulted in in-
fertility [39-41]. Evidence has illustrated that m6A
methylation is also involved in oocyte meiosis in Xen-
opus laevis [44]. Ythdf2 and Ythdf3 deletion prevented
female gonad formation in zebrafish [45]. In addition,
the dynamic m6A modification is abundant during fol-
licle development in pigs [46] or follicle selection in
chickens [47]. Several studies have shown that m6A
methylation involves numerous biological processes
[39-54]. However, knowledge about the distribution and
function of m6A in chicken sex determination and dif-
ferentiation of gonads is limited.

To decipher the role of RNA modification in the go-
nadal differentiation of chicken embryos, we performed
global MeRIP-seq in female and male left gonads on E7.
The present work generated a high-resolution m6A
methylation profile and explored the potential molecular
mechanisms underlying sex differentiation. We found
that many differential m6A methylation peaks existed
between the female and male left gonads in chicken em-
bryos, and most genes with differential m6A methylation
were involved mainly sex differentiation and develop-
ment. It should be noted that YTHDC2 can influence
the expression of sex differentiation-related genes in
males, which was confirmed by in vitro experiments.
Our results provide distinctive insights into the epigen-
etic mechanism of chicken embryonic gonadal differenti-
ation and will benefit further investigation of sex
manipulation in poultry industry and research on human
disorders of sexual development.

Methods and materials

Ethics statement

The experiments were approved by the Animal Welfare
Committee of China Agricultural University and per-
formed in accordance with the protocol outlined in the
“Guide for Care and Use of Laboratory Animals” (China
Agricultural University).

Embryo tissue collection and RNA isolation

Fertilized eggs were obtained from a pure line of White
Leghorns raised in the Experimental Base of Poultry
Genetic Resources and Breeding, College of Animal Sci-
ence and Technology, China Agricultural University.
The eggs were incubated in an automated egg incubator
at 37.8°C and 60% relative humidity with rotation every
2 h. Once the eggs reached E7, only the left gonads of
the chicken embryo were collected, immediately put into
the RNAlater™ Stabilization Solution (Invitrogen, Carls-
bad, CA, USA), and stored at —20°C. The remaining
embryo tissues were used to determine sex by direct
PCR kit (TransGen Biotech, Beijing, China) with CHDI
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primers (forward-5'-GTTACTGATTCGTCTACGAGA-
3, reverse-5'-TTGAAATGATCCAGTGCTTG-3’) [55].
Due to the RNA sample from a single individual gonad
is not enough for MeRIP-seq, more than 1200 embryos
were collected, and around 200 left gonads were mixed
into a pool according to sex. Subsequently, six pools
from three pools of female left gonads and three pools
of males were prepared for RNA isolation. Total RNA
was extracted with TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) following the manufacturer’s instructions.
The RNA concentration and purity were measured using
a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). The integrity of the
RNA was determined using an Agilent 2100 Bioanalyzer
(Agilent Technologies, CA, USA).

MeRIP-seq

Poly(A) RNA was purified from 40ug of total RNA
using Dynabeads Oligo (dT) and then fragmented into
100-nucleotide-long fragments using Magnesium RNA
Fragmentation Module (Illumina, Inc., CA, United
States) at 86 °C for 7 min. Then, the fragmented mRNAs
were incubated for 2 h at 4 °C with anti-m6A polyclonal
antibody (Synaptic Systems, Goettingen, Germany) in IP
buffer. Eluted m6A-containing fragments (IP) and un-
treated input control fragments were then concentrated
to generate the final ¢cDNA library. The libraries were
qualified and absolutely quantified using an Agilent
Bioanalyzer 2100 (Agilent Technologies, CA, USA). The
prepared libraries were then sequenced on an Illumina
NovaSeq 6000 (150 bp paired-end, PE150).

The analysis of sequencing data

The clean reads were aligned to the chicken genome se-
quences (GRCg6a) with HISAT2 [56]. SAM files were
converted to the BAM format using Samtools [57], and
PCR duplicates were removed using the Picard MarkDu-
plicates option to generate filtered BAM files. The m6A
modification peaks were called using MACS2 [58] (-g
9.6e8 --nomodel --extsize 200 -q 0.05). Meanwhile, input
data (high-throughput paired-end RNA sequencing,
RNA-seq) were used as background. Referring to the
proportion of the effective genome sizes of humans and
mice, we adjusted the parameters of -g in chickens. The
number of reads falling in the m6A peak in each sample
was counted with bedtools [59]. Moreover, the putative
peaks were annotated, and the motifs enriched in peak
regions were analyzed using RNAmod [60]. The Htseq-
count [61] tool was used to count the gene-level reads.
DEGs were identified with the R package DESeq2 [62]
between female and male gonads. The genes/peaks with
fold change >2 or < 0.5 and FDR < 0.05 were considered
different.
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Functional annotation

Using BioMart [63], we identified homologs of chicken
DEGs in humans. Functional analysis of these homologs
was performed using the Metascape online tool [64].
The Gene Ontology (GO) terms for biological process,
cellular component, and molecular function categories,
as well as Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, were enriched based on the Metas-
cape online tool with default parameters.

Cell separation and culture

The tissues (mesonephros and gonads) were harvested
and placed in PBS when the fertile chicken eggs reached
E7. Samples were dispersed by incubation with trypsin
0.25% (GIBCO, Grand Island, NY, USA) at 37 °C for 10
min with constant shaking. The digestions were stopped
by the addition of culture medium containing DMEM/
F12 with 10% (v/v) fetal bovine serum and 1% penicillin/
streptomycin (GIBCO, Grand Island, NY, USA), and the
samples were passed through a cell strainer (40 um) and
collected into 50-mL tubes. Subsequently, the cells were
washed with PBS and seeded in cell culture plates. Sex
identification was carried out by PCR as described above.
All the cells from individual males were mixed.

Small interfering RNA assays and qRT-PCR

The design and synthesis of YTHDC2-siRNA primer was
performed by RiboBio (Guangzhou, China). For the
YTHDC2-knockdown assay, the following sequence was
used: 5-CTCACAGATACCAAGTAT-3". We applied
YTHDC2-siRNA (RiboBio, Guangzhou, China) accord-
ing to Fugene HD (Promega, Madison, WI, USA) trans-
fection into male cells. After transfection for 48 h, the
cells were collected for RNA extraction, and cDNA was
synthesized using the First-Strand Synthesis kit (Takara,
Japan) and PrimeScript™ RT reagent kit with gDNA
Eraser (Takara, Japan). Gonadal cDNA was also synthe-
sized as described above. Quantitative real-time poly-
merase chain reaction (qQRT-PCR) was performed with
an ABI 7500 system (Applied Biosystems, Bedford, MA,
USA) using the TB Green® Premix Ex Taq™ Kit (Takara,
Japan) according to the manufacturer’s instructions. Pri-
mer sequences for S-actin, AMH, SOX9, FOXL2 and
CYPI9A1 have been published by our previous results
[65]. The primer of YTHDC2, FTO, METTL3, ALKBHS,
DMRTI and HEMGN were designed by DNAMAN ver-
sion 6.0 software. f-actin was used as the internal con-
trol, and the sequences of the gene-specific primers are
listed in Table 1.

Statistical analysis

In this study, statistical analyses were performed with
SPSS 22.0 (SPSS, Chicago, IL, USA). The data are
expressed as the mean+ SD (standard deviation) and
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Table 1 Primers used in gRT-PCR
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Gene Primer Accession number Annealing temperature, °C Fragment size, bp

B-actin F:5'- GAGAAATTGTGCGTGACATCA- 3' NM_205518 54/56 152
R:5"- CCTGAACCTCTCATTGCCA- 3'

YTHDC2 F: 5 GATGTCGTTTCCTTCGTC- 3' XM_004949271 54 187
R: 5 CTGTTTCGTTCTGGGTGT- 3'

FTO F: 5~ GGGACATAGAGACACCTG- 3' NM_001185147 54 253
R: 5 GCAGTTTCCAGTGATTTC- 3'

METTL3 F: 5 TAAGTTCGCCGTGGTGAT- 3' XM_025145967 54 181
R: 5'- CCAAAGGTTCAGGCATTC- 3'

ALKBHS F: 5 CGCTGCGGAACAAGTATT- 3' NM_001257201 54 282
R: 5 TGAAGAACGACACGGAGA- 3'

DMRT1 F: 5'- GCAACCACGGCTACTCCTCGC- 3' NM_001101831 56 146
R: 5 TTCCTGGGCTTGCTGCCTCCT- 3

HEMGN F: 5 AACCACAGCCAAACCCTC- 3' XM_430508 56 185
R: 5'- CAGCATATCCTCTTCACCC- 3'

AMH F: 5 GGATGGAGGTGCCCCTCTGT- 3' NM_205030 56 129
R: 5" GCAGCATCACCCTCAGGTGG- 3'

SOX9 F: 5= AGTACCCGCATCTGCACAA- 3' NM_204281 56 161
R: 5 CCTCCTGCGTGGTTGGTA- 3'

FOXL2 F: 5 CTGATCGCCATGGCCATACG- 3' NM_001012612 56 127
R: 5~ GGCGGATGCTGTTCTGCCA- 3'

CYP19AT F: 5 GGAATTGGGCCTCTCATTTC- 3' NM_001364699 56 154

R: 5"~ CGTGAAATACGCTGGAGGAT- 3'

Abbreviations: F Forward, R Reverse

were analyzed using a two-tailed Student’s ¢-test, and at
least three replicates were conducted in multiple inde-
pendent experiments. The differences were considered
to be statistically significant at a P-value < 0.05.

Results

General features of m6A methylation in chicken
embryonic gonads

Our previous RNA-seq data indicated that YTHDC2
showed differential expression levels between females
and males in early chicken embryonic gonads (Add-
itional file 1: Fig. S1la). Therefore, we hypothesized that
m6A methylation may play significant roles in the
process of sex determination and differentiation. To gain
insight into this phenomenon, we collected the left go-
nads of both sexes at E7 in triplicate for MeRIP-seq. The
mapping statistics of MeRIP-seq from all samples are
displayed in Additional file 2: Table S1, suggesting that
each sample showed high quality for the following ana-
lyses. We identified 15,191 and 16,111 m6A peaks in the
female and male left gonads in chicken embryos, re-
spectively. Overall, 12,515 m6A peaks overlapped be-
tween the two groups, along with 2676 and 3596 unique
m6A peaks in female and male left gonads (Fig. la),

indicating that m6A methylation in the male gonadal
gene is relatively richer. Consistent with previous studies
[66], gonadal m6A methylation peaks were generally
found in the genomic features, in which exon regions
accounted for the largest proportion (Additional file 1:
Fig. S1b).

To further refine the topological pattern of m6A
modification in chicken embryonic gonads, we investi-
gated the distribution of m6A peaks. The results demon-
strated that the peaks were markedly enriched in the
CDS and stop codon (Fig. 1b, c). Based on the number
of m6A peaks contained in each transcript, we further
classified the methylated transcripts into five types and
found that approximately 90% of transcripts contained
one or two m6A peaks (Fig. 1d). Overall, there was high
consistency in the distribution of m6A peaks between fe-
male and male chicken embryonic left gonads. Given
that the motifs that bind to various transcription factors
are the sites where RNA methylation and demethylation
begin, we performed a comprehensive motif scan ana-
lysis on male and female m6A peaks, respectively. We
found that GGACU was significantly enriched in the fe-
male and male chicken embryonic left gonads (Fig. 1le,
f), which is in agreement with previous studies [67, 68].
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Differential m6A methylation analysis

Three replicates of MeRIP-seq in the female and male
groups showed high concordance using the Pearson cor-
relation coefficient (Fig. 2a). A principal component ana-
lysis (PCA) plot based on the m6A methylation level
displayed a clear separation between female and male

left gonads (Fig. 2b), in which PC1 explained 87.5% of
the phenotypic variance. To detect the differences in
m6A methylation levels between female and male go-
nads, we assessed the differentially methylated m6A
peaks (DMPs) marked by MeRIP signals. A total of 1764
DMPs were detected, including 1013 female- and 751
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Fig. 2 Analysis of differential m6A methylation in chicken embryonic gonads. a A heatmap of the sample correlation matrix of m6A showing
high similarities between duplicates and dissimilarities between female and male left gonads. b PCA plot of MeRIP-seq of female and male left
gonads. ¢ Bandplots (top) and heatmaps (bottom) showing the quantification of MeRIP-seq data of female-biased and male-biased méA peaks in
gonads at E7. d Top 20 significantly enriched terms of female-biased (left) and male-biased (right) DMGs

male-biased DMPs in chicken embryonic left gonads
(Fig. 2c), which corresponded to 281 and 327 protein-
coding genes (DMGs; Additional file 2: Table S2). The
heatmap revealed that these sex-biased DMPs showed
highly clear sex-specific patterns at E7 (Fig. 2c). The top
20 female- and male-biased DMPs are listed in Add-
itional file 2: Table S3. The annotation results of DMPs
on the chromosome distribution indicated that 56.3%,
1.7%, 39.0% and 3.1% female-biased peaks and 72.7%,
1.1%, 0.5% and 25.7% male-biased peaks were located on
the autosome, unknown chromosome, W chromosome
and Z chromosome (Additional file 1: Fig. S1c). More
DMPs were located on Z chromosome in males than in
females.

The distribution of DMGs on chromosomes was simi-
lar between female and male gonads (Additional file 1:
Fig. S1d). Among these DMGs, we found that some
genes were related to sex determination and differenti-
ation, such as FOXL2, CYPI9A1, AMH and SOX9. In
addition, many development-related genes were also dis-
covered, such as BMP2, BMPR2, FGF2 and SMAD2. To
better understand the functional consequences of m6A
methylation, we performed a functional enrichment ana-
lysis of sex-biased DMGs using Metascape software. The
top 20 significantly enriched gene ontology (GO) terms
were identified (Fig. 2d). The significant terms of the
female-biased DMPs were related to ERK1 and ERK2
cascade, muscle tissue development, regulation of
growth, receptor ligand activity, response to growth fac-
tor, sex differentiation, tissue morphogenesis, SMAD
protein signal transduction and embryonic morphogen-
esis. Moreover, the terms driven by the male-biased
DMPs were enriched mainly in cell junction
organization, cellular component morphogenesis, uro-
genital system development, tissue morphogenesis, posi-
tive regulation of cell migration, MAPK cascade, smooth
muscle cell migration, outflow tract morphogenesis,
regulation of cell morphogenesis.

Correlation analysis of m6A methylation and DEGs

To clarify the functional consequences of the gene ex-
pression levels modified by m6A methylation, we pro-
filed the global transcriptomic landscape of both gonads
on the left using RNA-seq. The results of sequencing
alignment of RNA-seq are listed in Additional file 2:
Table S1. Similar to the m6A results, unsupervised hier-
archical clustering of the top 1000 most variable genes
revealed a distinct expression signature in female and

male left gonads (Fig. 3a). RNA-seq analysis detected
902 differentially expressed genes (DEGs), including 457
female- and 445 male-biased DEGs (Fig. 3b). The major-
ity of DEGs resided on the autosome (Fig. 3c). Subse-
quently, the global relationship between gene expression
and m6A methylation was calculated. By assigning m6A
methylation regions to the nearest genes, we found that
most genes showed a positive correlation between the
expression levels and the abundance of m6A peaks based
on calculated fold changes, and only a few of them were
negatively correlated (Fig. 3d). Moreover, we found 410
DEGs with differential m6A methylation levels. A total
of 203 and 206 genes with m6A hypermethylation
showed upregulated transcription levels in females and
males, respectively, and one gene with m6A hypomethy-
lation was downregulated in females (Fig. 3e). Interest-
ingly, many sex-related genes showed differences in both
m6A methylation and mRNA expression (Fig. 3f, Add-
itional file 1: Fig. Sle-h, Fig. 4c). For instance, SOX9, a
male gonadal developmental marker gene, showed sig-
nificantly higher m6A methylation and mRNA levels in
the male gonads (Figs. 3f, 4c), while CYP19A1, which is
associated with female gonadal differentiation, exhibited
stronger m6A methylation and mRNA expression levels
in the female gonads (Additional file 1: Fig. S1h, Fig. 4c).
Additionally, the genes of HEMGN, AMH and FOXL2 all
have DMPs between female and male gonads (Add-
itional file 1: Fig. Sle-g); however, we did not find DMPs
in the DMRT1I gene body.

To explore the regulatory mechanism of m6A methy-
lation in chicken gonadal differentiation, we performed a
series of in vitro experiments for some differential m6A
methylation-related genes and genes involved in gonadal
differentiation. We found that the expression level of
YTHDC?2 was significantly higher in male gonads (Fig.
4a), which is consistent with the RNA-seq results (Fig.
4b). Some marker genes of sex differentiation were also
differentially expressed (Fig. 4c). Moreover, we found
that the stop codon of SOX9 and the CDS of HEMGN
showed significant enrichment in IP samples (Fig. 3f;
Additional file 1: Fig. Sle). Based on these results, we
hypothesize that sex-related genes are affected by YTHD
C2. To clarify the process, we used YTHDC2-siRNA to
downregulate the expression of YTHDC2 in male meso-
nephros/gonad mingle cells. Interestingly, the expression
of the sex-related genes SOX9 and HEMGN was down-
regulated in the YTHDC2-siRNA group (Fig. 4d). Based
on these observations, we preliminarily concluded that
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Fig. 3 Integration analysis of MeRIP-seq and RNA-seq. a Unsupervised clustering analysis showing the expression profiles of the top 1000 most
variable genes in the female and male gonads at E7. b Volcano plots of DEGs number between female and male left gonads. ¢ The number and
percentage of DEGs in each chromosomal allocation between female and male gonads. d Four-quadrant graph exhibiting the genes containing
methylated m6A peaks in chicken embryonic gonads. e Venn diagrams show the shared and unique genes obtained from four groups: female
DMGs, male DMGs, female DEGs and male DEGs. f The abundance of m6A peaks in the SOX9 gene of female and male gonads detected

by MeRIP-seq
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YTHDC2 could affect sex differentiation-related gene
expression by regulating epigenetic patterns in chicken
embryonic gonads. Therefore, m6A methylation may
play a role in sex determination and differentiation in
chicken.

Discussion

The chicken embryo is a superior model in the study of
cell biology and organ development [6, 69-74]. In the
past few decades, the regulatory mechanisms for chicken
sex determination and differentiation, such as transcrip-
tion factors [12, 16, 20], DNA methylation [24, 25, 28—
30] and hormones [9, 10, 18, 20, 23, 27], have been ex-
tensively studied. Recently, m6A methylation, a revers-
ible apparent modification [31], has been reported to
play an essential role in vertebrate physiology and repro-
ductive processes like development, spermatogenesis,
oogenesis and infertility [39-42, 44—50]. Notably, m6A
methylation is essential in the sex determination and go-
nadal development process of many animals, including
mice [39-41], fish [45, 75] and Drosophila [51-53].
However, the roles and molecular mechanisms of m6A
modification in the sex differentiation of chicken em-
bryos remain unclear. Here, we established a compre-
hensive m6A methylation profile in chicken embryonic
gonads. Our results suggested that m6A methylation is
significantly different between female and male gonads,
and results in distinct expression patterns of many sex-
related genes. Further, these marker genes involved in
gonadal differentiation were confirmed to be regulated
by m6A enzyme YTHDC2, which means that m6A
methylation may be an important factor affecting
chicken sex differentiation.

We found more m6A peaks in the male gonads than
in the female gonads, implying that m6A methylation
might be a vital impetus in sex determination and differ-
entiation. The genomic distribution of m6A peaks in
male and female embryonic gonads is globally similar.
The percentage of m6A peaks located in the CDS was
the largest, while the coverage density of m6A peaks was
the highest at the stop codon in chicken embryonic go-
nads, which was consistent with research on mammals
[67, 68, 76, 77]. Subsequently, we compared the DMPs
between female and male gonads in chicken embryos.
The quantitative advantage of DMPs in females is
reflected mainly in the sex chromosomes, while the
number of DMGs is equal between males and females,
which may be caused by the poor annotation of the W
chromosome [14]. Previous studies have also proven that
m6A methylation plays an important role in the process
of tissue development [78-82]. In this study, GO ana-
lysis showed that DMGs were enriched mainly in sex
differentiation- and development-relevant items, includ-
ing sex differentiation, SMAD protein signal
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transduction, urogenital system development and tissue
morphogenesis, which suggests that DMGs were related
to the dynamic process of gonadal development. A num-
ber of studies have reported the functions of these
DMGs, like BMP2 [83], CYPI9AI [27], ESRI [18],
FOXL2 [6], JUN [84], SMAD?2 [84, 85] and SOX9 [16, 20,
22]. Our findings revealed that the post-transcriptional
modifications of these genes should be alternative factor
driving sex difference, which means that m6A methyla-
tion may play a major role in the differentiation of go-
nads. This finding would contribute to understanding
the mechanisms of sex determination and differentiation
in chickens and providing a promising reference for fur-
ther research of human gonad development related
diseases.

The role and underlying mechanism of m6A modifica-
tion in regulatory of gene expression is still uncharted
territory. Collectively, m6A has been linked to reduce
mRNA stability and promote mRNA degradation in vari-
ous biological pathways [32, 86], suggesting that the
m6A methylation level is negatively correlated with gene
expression. In addition, several researches suggested a
possible positive relationship between the extent of m6A
methylation and the mRNA levels [87-90]. Integration
analysis of RNA-seq and MeRIP-seq data in our work
found that the expression level of most genes was posi-
tively correlated with the m6A methylation signal in the
whole genome, which is also supported by many previ-
ous studies [87-90]. These findings mean that the roles
of m6A methylation in transcriptional regulation need to
be elucidated in future studies. The mRNA m6A modifi-
cations are well-known to be recognized and bound by
m6A reader proteins, such as YTHDF1-3, YTHDC1 and
YTHDC?2 [36, 39, 45, 86, 91, 92]. In our study, RNA-seq
analysis suggested that only YTHDC2 was differentially
expressed between female and male gonads among m6A
methylation-related genes, which was verified by qRT-
PCR. Previous studies have shown that the loss of
YTHDC2 downregulates the meiotic genes in mitotic
spermatogonia [42]. The function of YTHDC2 can re-
duce the translation efficiency of target genes and reduce
the mRNA abundance in the meiosis of germline cells
[39]. Interestingly, our in vitro experiments of YTHDC2
knockdown in males suggested that YTHDC2 could
downregulate HEMGN and SOX9 gene expression by re-
shaping their m6A patterns. HEMGN has been shown
to be involved in sex determination in early chicken em-
bryos [15]. SOX9 is a marker gene of testicular differen-
tiation during chicken embryonic development [16, 20,
22]. Nearly half of the DEGs showed differential m6A
methylation modifications in the gene body, which were
involved in gonadal differentiation and development
terms. The expression of sex differentiation marker
genes was also verified by qRT-PCR. In chicken, the
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changes of these candidate regulators of gonadal sex dif-
ferentiation induced sex reversal [9-12, 15—17]. Thus,
m6A methylation may play roles during sex differenti-
ation in chickens. However, further research at the
single-cell level is required to validate this hypothesis
and will be helpful to elucidate molecular basis under-
lying gonadal differentiation. Here, we provided a pio-
neering work demonstrating the function of YTHDC2 in
chicken embryonic gonads. Although the roles of
YTHDC2 have been studied in mammals [39, 42, 43,
54, 76, 93, 94], the precise transcriptional regulation
molecular mechanism underlying multiple crucial
roles of YTHDC2 remains to be determined in
chicken. More evidence is needed to explore whether
YTHDC2 can directly regulate the expression of sex-
related genes.

Conclusions

This study first analyzed transcriptome-wide m6A
methylation modification pattern in the gonads of
chicken embryos and preliminarily explored roles of
YTHDC?2 in regulating key genes underlying sex differ-
entiation. The m6A methylation profile and molecular
basis underlying gonadal differentiation in chicken em-
bryo provide a new avenue for studying RNA modifica-
tion in vertebrate sex determination and differentiation
and offer distinctive insights into the epigenetics mech-
anism of studies about human gonadal development and
infertility.
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