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Abstract

Selenium is an essential trace mineral important for the maintenance of homeostasis in animals and humans. It
evinces a strong antioxidant, anti-inflammatory and potential antimicrobial capacity. Selenium biological function is
primarily achieved by its presence in selenoproteins as a form of selenocysteine. Selenium deficiency may result in
an array of health disorders, affecting many organs and systems; to prevent this, dietary supplementation, mainly in
the forms of organic (i.e., selenomethionine and selenocysteine) inorganic (i.e., selenate and selenite) sources is
used. In pigs as well as other food animals, dietary selenium supplementation has been used for improving growth
performance, immune function, and meat quality. A substantial body of knowledge demonstrates that dietary
selenium supplementation is positively associated with overall animal health especially due to its
immunomodulatory activity and protection from oxidative damage. Selenium also possesses potential antiviral
activity and this is achieved by protecting immune cells against oxidative damage and decreasing viral replication.
In this review we endeavor to combine established and novel knowledge on the beneficial effects of dietary
selenium supplementation, its antioxidant and immunomodulatory actions, and the putative antimicrobial effect
thereof. Furthermore, our review demonstrates the gaps in knowledge pertaining to the use of selenium as an
antiviral, underscoring the need for further in vivo and in vitro studies, particularly in pigs.
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Introduction

Selenium (Se) is an essential dietary trace element for
animals and humans, playing indispensable roles in sev-
eral physiological processes [1]. In nature Se exists
mostly in two forms: Selenites with tetravalent (Se*),
and Selenates with hexavalent (Se®") cations, respect-
ively, from which all other selenium species are derived
[2]. With respect to plants, Se is not an essential element
but plants are able to convert mineral forms of Se
present in the soil into various organic forms, namely
selenomethionine and metylselenocysteine [3].

Se exhibits antioxidant, anti-inflammatory, anti-
carcinogenic, potential antiviral and antibacterial activity
[4]. Its biological function is achieved through the inser-
tion of this trace element into a family of proteins
known as selenoproteins [5]. Among these, glutathione
peroxidase (GSH-Px) is a pivotal component of the anti-
oxidant glutathione pathways which detoxifies lipid per-
oxides and provides protection of cellular and
subcellular membranes against reactive oxygen species
(ROS) damage [6]. It is worth mentioning that synthesis
of selenoproteins is regulated by the availability of Se
and, in situations of low availability, Se is supplied for
synthesis of certain selenoproteins in detriment of others
(7, 8].

Se exerts pronounced immune-modulatory capacity.
Low levels of this trace mineral are linked to a debili-
tated immune system [9]. Likewise, Se is involved non-
specifically in the immune response, being important for
chemotactic and phagocyte activity and respiratory burst
activities [4]. With regards to macrophage activity, Se
mitigates the cytotoxic effects of ROS, reduces intracel-
lular pathogen replication, enhances macrophage

numbers and their phagocytic potential [8]. Adaptive im-
munity is also affected by selenium intake including the
activation and functions of T- and B- cells [9, 10]. In the
same context, inflammatory gene expression can be in-
fluenced by hyperoxidation, thus Se may also affect in-
flammatory response by regulating the oxidative state of
immune cells [11].

Another characteristic of Se that has attracted much
attention is its potential antiviral capacity. Oxidative
stress is a hallmark of viral infections and, in many cases,
ROS may contribute to increased viral replication, lead-
ing to an amplification loop [12]. Indeed, the increase of
ROS production has been well-documented during hu-
man immunodeficiency virus (HIV), hepatitis B virus
(HBV), hepatitis C virus (HCV), Epstein-Barr virus
(EBV), herpes simplex type 1 (HSV-1), vesicular stoma-
titis virus (VSV), human T cell leukaemia virus type 1
(HTLV-1) and influenza viral infections [13]. Addition-
ally, Se deficiency can alter chemokine and cytokine ex-
pression during viral infections [14]. Therefore,
supplemental Se can enhance GSH-Px activity which
protects the cell against free-radical oxidant injury [15].

Several studies have tested different sources of Se (i.e.,
organic and inorganic) against various pathogens (i.e., vi-
ruses, bacteria and protozoa; Table 1), showing general
positive systemic benefits for a several species. Se sup-
plementation suppressed TNF-a-induced HIV replica-
tion in culture [16]. Likewise, Se inhibits activation of
HIV-1 in cell culture [17]. In pigs, supplemental Se
inhibited porcine circovirus type 2 virus (PCV2) replica-
tion in PK-15 cells [15]. Further, mice subjected to her-
pes simplex virus 2 infection (HSV-2) presented
decreased viral load in vaginal tissue and higher levels of
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Table 1 Summary of in vivo and in vitro studies evaluating the health benefits of Selenium

Source Targeted species® Pathogen Effect References
SeMet Pigs Virus Antiviral [15,19]
Se-yeast Humans Virus Antiviral [16]
Se-yeast Pigs Bacteria Antibacterial [2]
Se-yeast Ruminants Bacteria Antibacterial [20]

SeMet; Se-yeast Poultry Bacteria Antioxidant, immunomodulation, antibacterial [21,22]
Se-yeast; SeMet Pigs N/A Immunomodaulation, antioxidant [23-30]
Sodium selenite Humans Virus Antiviral [31]
Se-yeast; Sodium selenite Poultry Virus Antiviral [32]
Se-enriched alfalfa Ruminants Bacteria Immunomodulation [33]
Sodium selenite Poultry Bacteria Antibacterial [34]
Se-enriched probiotics Poultry Protozoa Antioxidant [35]

N/A not applicable; the antimicrobial effect of Se was not evaluated in the study
“In some studies cell culture models were used

tumor necrosis factor alpha (TNF-a) and interferon
gamma (IFN-y) [18].

As Se supplementation into animal production has
grown, the swine industry specifically has seen wide-
spread economic and health benefits of its use [36].
Modern commercial pig production, based on high
animal density in close quarters, has led to increased
chances of infectious disease outbreaks along with as-
sociated mortality, increased control and treatment
costs and decreased production values for the surviv-
ing pigs [37]. These outbreaks are a well-known cause
of economic losses for the swine industry [38]. Fur-
thermore, Se plays a leading role in the immune sys-
tem; notwithstanding, the true extent of Se
immunomodulatory capacity remains to be elucidated.
Swine in vivo studies specifically pertaining to its use
as an antiviral as well as a larger database of in vitro
studies demonstrate the current gap of knowledge
within this subject. Existing data (Table 2) under-
scores the need for further research, because more
notably for pigs, supplemental dietary Se increases overall
health, growth performance, meat quality, reproductive
function and immune functionality, thereby reducing the
burden caused by infectious diseases [37]. Moreover, due
to similar selenoprotein profile, anatomic features and
physiology to those of humans, pigs are an excellent
model for translational research [39]; therefore, data
arising from Se studies in pigs could be used to improve
human health. This review will pinpoint historical and
current knowledge on the beneficial outcomes of dietary
selenium supplementation within food animals, with
special attention given to pigs.

Biological function of selenium and metabolism
Se is a metalloid trace element found in the environment
as organic and inorganic forms. There are four different

inorganic chemical forms; selenide (Se¥ ), elemental
state selenium (Se®), selenite (Se**), and selenate (Se®").
Se competes with sulphur (S) in biochemical pathways,
and is incorporated into the S-containing amino acids,
cysteine (Cys) and methionine (Met) forming organic Se
compounds like selenocysteine (SeCys) and seleno-
methionine (SeMet) [1]. Studies have found that plants
and grains absorb inorganic forms better, while organic
forms are more efficiently metabolized by mammals [2,
53]. Selenocysteine is one such organic variant that is
commonly found within animal sourced Se products,
while enriched hay and cereals are common inorganic
variants [54]. It is worth mentioning that Se exhibits
synergy with vitamin E and is better absorbed in the
presence of this vitamin [54], thus, diseases caused by Se
deficiency are more severe when they occur concomi-
tantly with vitamin E deficiency [55].

The absorption of Se occurs mainly in the duodenum.
Absorption takes place primarily by active transport
through a sodium pump. The mechanism of intestinal ab-
sorption of Se may differ depending of the chemical form
of the element. Selenite is absorbed by simple diffusion;
whereas, selenate is absorbed by a cotransport of sodium
selenate and exchange selenate/OH™ [8]. Organic forms
(i.e, selenomethionine and selenocysteine) follow the
mechanisms of amino acid uptake. The ingested seleno-
methionine is absorbed in the small intestine by an active
mechanism similar to that used for methionine uptake via
intestinal methionine transporters [56] and enters the me-
thionine pool of the body [57]. Selenomethionine can also
be metabolized in the liver through the methionine cycle
and transsulfuration pathways, yielding selenocysteine as a
transient form, which is promptly converted into selenide,
which in turn, is used for selenoprotein synthesis [8, 58].
Interestingly, in broilers, Se is mainly absorbed in the je-
junum by a non-saturated diffusion process [59].
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Selenocysteine (Sec) is a key component of selenopro-
teins. Sec is recognized as the 21* amino acid [60]. Its in-
corporation into such proteins results from being co-
translationally inserted during protein synthesis [24, 61].
Furthermore, the presence of selenocysteine rather than
cysteine in the active site of an enzyme increases enzym-
atic efficacy up to 1000 fold [58]. Upon closer examination
of Se on cellular activity, it is noted that nearly all seleno-
proteins are redox enzymes [62], which plays an influential
role in immune cell signaling and function [21, 24] . GSH-
Px is a family of selenoezymes, consisting of six isoforms
(GPX 1-6) that presents selenocysteine on each subunit
[63], serving as a shield for the cell to protect itself against
hydrogen or lipid peroxides, which contribute to cardio-
vascular disorders, anemia, atherosclerosis, and inflamma-
tion [58, 63, 64]. Mammalian selenoproteins include:
glutathione peroxidases (GPX 1-6), thioredoxin reductase
(TR 1-3), iodothyronine deiodinases (D 1-3), selenopho-
sphate synthetase (SPS2), and several thioredoxin-like
selenoproteins, some of which serve as antioxidants within
the body [65]. When selenoproteins function as antioxi-
dants, they protect against cellular damage by stabilizing
deleterious free radical molecules, which presents a pro-
nounced influence in the immune system when it occurs
within immunomodulatory organs such as the lymph
nodes and spleen [37, 66].

The influence of Se supplementation also is reflected
in its capacity to modify the expression and activity of
more than 25 selenoproteins which are involved in
oxidative stress, detoxification, transport mechanisms,
metabolisms, and inflammatory responses [33, 65, 67].

For humans the recommended daily supplementation
of Se is 55-75ug/d. Within this dosing range, Se en-
hances the immune system, and stimulates a more effi-
cient production of proteins and enzymes [6, 65, 68].
Larger doses as high as 200 pg/d are associated with the
prevention of illnesses such as cancer, cardiovascular
disease, and decreased viral mutation [69]. Of particular
note, human dietary intakes range from high to low ac-
cording to geography [70]. Indeed, Se levels in soil and
food are low in some regions of China, New Zealand,
and parts of Europe and Russia, making the recom-
mended daily supplementation higher due to a lower
average blood Se concentration in their populations
[9, 71].

For food animals, an upper limit value for inorganic Se
of 0.5 mg/kg and organic Se (Se yeast, L-SeMet) of 0.2
mg/kg of complete feed was established by The Euro-
pean commission [1] and 0.3 mg/kg by the FDA [72].
Notwithstanding, studies have shown that Se require-
ments for poultry may be much higher than the recom-
mended upper limit [73-75]. Of particular interest,
according to the NRC (2012) [76], the dietary Se re-
quirements ranges from 0.3 ppm for weanling pigs to
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0.15 ppm for finishing pigs; for gestating and lactating
sows the dietary Se requirement is set at 0.15 ppm. Se
concentrations in blood plasma are used to assess the
efficacy of the Se dosage in supplemented feed. Plasma
Se concentrations of >8 pg/dL are recognized as an
adequate status in a healthy animal [40].

Se also plays a pivotal role within the gastrointestinal
system through the connection between the gut micro-
biota and the host’s immune system, which has pro-
moted the application of different forms of Se in the
maintenance of gut immunity and microbiota [77]. Such
supplementation stimulates the differentiation and pro-
liferation of epithelial cells which regulate intestinal
homeostasis and thus, the treatment of such an environ-
ment with dietary Se ultimately strengthens the host’s
immune system and helps the host to tolerate the anti-
gens naturally present within the gut [78].

Reported studies have shown that Se deficiency is
followed by reduction of T cell counts, antibody re-
sponses, and neutrophil efficacy [79], decreasing the cap-
acity to build a robust immune response and increasing
the susceptibility to environmental challenges such as in-
fection. Other health disorders derived from Se defi-
ciency include Mulberry heart disease (MHD) and
hepatosis dietetica (HD) in pigs [55], white muscle dis-
ease in calves [80], encephalomalacia, and exudative di-
athesis in chicks [81]. Correspondingly, in humans, Se
deficiency results in a highly lethal cardiomyopathy
known as Keshan disease [82]. Likewise, Se levels were
found to be decreased in the brain of Alzheimer’s
patients [83]. Low selenium concentration in plasma was
associated with 4- to 5-fold increased risk of prostate
cancer [84].

Even though numerous benefits to Se supplementation
have been already described, the determination of an ad-
equate dosage to achieve the best host responses without
leading to toxicity is often a challenge. Excessive intake
of Se results in toxicity (seleniosis). Common effects of
selenosis in humans include the weakening and/or loss
of hair and nails, mottling of teeth, nausea, and nerve
damage [85]. Of particular note, an increased risk for
type 2 diabetes has been reported in human subjects tak-
ing supplementary Se [86]. Evidence from animal studies
demonstrated that elevating dietary Se intakes (0.4 to
3.0 mg/kg of diet) above the nutrient requirements, simi-
lar to overproduction of selenoproteins, led to insulin re-
sistance and/or diabetes-like phenotypes in pigs [87].
One potential mechanism underlying the diabetogenic
effect of Se could be due to elevated activity or expres-
sion of selenoproteins, resulting in over-scavenging of
ROS, which in turn, leads to inhibition of protein tyro-
sine phosphatases and suppressed insulin signaling [87].

In livestock, symptoms of selenium intoxication com-
monly observed are hair loss, hoof deformities and
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reduced productivity [8], whereas acute exposure to high
Se intake will result in death from respiratory failure [88].
Se nanoparticles are an alternative that have been consid-
ered to prevent toxicity and increase chemical stability
and biocompatibility [89, 90]. Indeed, nano-Se results in
higher Se retention and glutathione S-transferase activity
due to its smaller size and higher bioavailability [91].

Selenium in food animals

Se deficiency in food animals can markedly affect pro-
ductive efficiency and health. Lower weight gains, re-
duced milk yield, and reduced fertility are among the
effects of Se deficiency observed in livestock; further-
more, health problems particularly due to cell membrane
damage, resulting from peroxides and immunosuppres-
sion, are also observed [92].

Poultry

In poultry, Se supplementation exerts beneficial effects
against several diseases, including coccidiosis, necrotic
enteritis and pathogenic E. coli. Indeed, Se-enriched pro-
biotics enhanced growth performance, antioxidant cap-
acities, glutathione peroxidase-1, glutathione peroxidase-
4 and IFN-y mRNA gene expression, reduced oocysts
shedding, and the cecal lesion scores of chickens and
provided protection against E. tenella [35]. Dietary Se
supplementation exerted a positive effect on body weight
gain and feed efficiency of broilers reared under heat
stress conditions [93]. In the same way, a significant in-
crease of Lactobacilli spp. and Bifidobacteria spp., and a
concomitant decrease of Escherichia coli and Salmonella
spp- populations were observed in hens supplemented
with organic Se [93]. Broiler chickens experimentally
challenged with E. maxima and Clostridium perfringens
and supplemented in ovo with sodium selenite had
increased body weight, reduced intestinal lesions and
oocyst production, increased levels of transcripts for
interleukin-1-beta (IL-1f), interleukin-6 (IL-6) and
interleukin-8 (IL-8) in intestine as well as increased
serum antibody levels to C. perfringens a-toxin and NetB
toxin [22]. Chickens inoculated with E. coli (serotype
O1:K1) in the lower abdominal air sac had reduced mor-
tality rate and air sac lesions when supplemented with
inorganic Se [34]. Nano-Se supplementation improved
antioxidant status and also increased IgG and IgM con-
centrations in chickens under oxidative stress [94].
Broilers supplemented with dietary Se had higher Se
concentrations and GSH-Px activity in the liver, and
higher serum antibody titer against H5N1 (Re-4 strain)
[95]. Further, broilers fed Se-supplemented diets from
22 to 42 days of age had higher average daily feed intake
and daily gain, and increased GSH-Px activity in breast
and thigh muscles [96]. Of note, supplementation with
Se-yeast was more effective than sodium selenite in

(2022) 13:58

Page 5 of 11

improving meat quality of broilers [97]. Similarly, com-
pared to sodium selenite, Se-yeast was more available for
enhancing Se concentrations in plasma and tissues, and
the expression and activity of GSH-Px in the pancreas of
broilers [98]. It is worth mentioning that Se from ultra-
fine sodium selenite was more available to broilers than
Se from sodium selenite in enhancing the GSH-Px
mRNA expression in plasma, liver and pancreas of
broilers [99].

Se deficiency can cause structural damage to the im-
mune organs of chickens, which is manifested by de-
creased growth of the thymus and bursa of Fabricius
[100]. It is worth emphasizing that for chickens and tur-
keys, Se requirements may be higher than previously es-
timated, and it has been proposed that Se should be
increased to values above of the FDA limits [72-74]. In-
deed, Liao et al. [101] demonstrated that the optimal
dietary Se levels would be 0.36 mg/kg to support the full
expression of selenoproteins in plasma, liver and kidney,
and 0.46 mg/kg to support the full expression of seleno-
proteins in the pancreas of broilers from 1 to 21 days of
age. Likewise, Wang et al. [96] reported that for broilers,
between 22 to 42 days of age, Se requirements should be
0.49 mg/kg to achieve its maximum concentration, and
0.37 mg/kg for the full expression of selenoproteins in
plasma and various tissues.

Ruminants

As aforementioned, in domestic animals, Se deficiency
will lead to immunosuppression, make animals prone to
bacterial and viral infections, and compromise neutro-
phil activity, antibody production, proliferation of T and
B cells as well as cytodestruction by T lymphocytes and
NK cells [90, 102]. In ruminants, Se supplementation
improved immune response by increasing neutrophil ex-
pression L-selectin, IL-8 receptor, and toll-like receptor
4 (TLR4) in sheep affected by Necrotic Pododermatitis,
thereby contributing to a faster recovery [20, 103]. It is
important to mention that Se deficiency in calves, lambs
and dairy goat kids leads to a serious disease known as
white muscle disease (WMD) or nutritional muscular
dystrophy (NMD) [104]. This disease is manifested clin-
ically by stiffness, weakness and recumbency [4]. In
young animals, WMD can also cause cardiac injury
which results in sudden death within the first weeks
after birth [90].

Studies have been conducted incorporating Se enriched
milk into the diets of calves through the use of Se enriched
yeast, and selenomethionine [105, 106]. The milk en-
hanced by organic variants consistently increased the Se
milk content as well as yielded enhanced immune capabil-
ities for calves [105]. The use of enriched milk specifically
has allowed for an effective readily available mode of Se
administration, and has branched into the use of other
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enriched foods for animal consumption [107]. Likewise,
calves immunized with J-5 Escherichia coli bacterin, which
had access to Se-enriched hay around weaning, had higher
antibody titers and a greater neutrophil total antioxidant
potential. This resulted in lower mortality rates, as well as
improved weight gain [33].

Pigs

The data supporting the benefits of Se supplementation
within swine production has been derived from a num-
ber of in vivo studies, summarized in Table 2, which
examine the roles that Se plays in immunomodulation,
pregnancy, toxicity, and the resulting health effects from
environmental stressors [91, 92].

A recent study compared the effects of two different
Se sources: organic (i.e., selenomethionine, SeMeth/ Se-
methylselenocysteine, MeSeCys) vs. inorganic (i.e., so-
dium selenite, NaSe) on immune function, overall
health, and meat quality. The resulting data revealed that
the organic forms of Se yielded stronger immune re-
sponses, and higher Se concentrations within tissues as
opposed to the inorganic form [38]. Moreover, serum
concentrations of IgG, IgA, and IgM of organic Se-
supplemented groups were higher when compared to
the inorganic diets. MeSeCysalso increased gene expres-
sion of a number of liver and muscle selenoproteins.
SeMet and MeSeCys demonstrated advanced capabilities
to improve overall immune function [38]. Other studies
comparing organic and inorganic sources of Se yield
similar results, where organic sources were consistently
shown to increase serum Se concentrations, GSH-Px
activity, and antioxidant ability [25, 26, 47, 108].

Increased dietary Se intake in pregnant sows increased
Se levels and antioxidant capacities in both the sow and
the piglets, while decreasing the level of inflammatory
factors [46]. Se levels within sow colostrum and milk
can be increased significantly when sows are supple-
mented with organic sources [46, 51]. Interestingly, inor-
ganic Se was found to be more biologically available for
enhancing sow serum GSH-Px activity [51].
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Pig diets can be contaminated by mycotoxins which lead
to detrimental health effects. Deoxynivalenol (DON) is a
mycotoxin that causes immunosuppression in pigs [41]. Se
has the potential to counteract DON-induced immunosup-
pression in piglets and for this reason was regarded as
promising treatment for DON-mediated toxicity [52].

Heat stress is a well-known factor the can negatively
affect pig health. Piglets fed a Se-enriched probiotic diet
and raised under heat stress were more capable of main-
taining immune functions (increased T lymphocyte pro-
liferation and IL-2 concentration), had higher
selenoproteins synthesis, and higher antioxidant capaci-
ties compared to control piglets and also showed in-
creased growth performance [109].

Weaning is one of the most stressful events in the life
of a piglet. They are separated abruptly from the sow,
transferred to an unfamiliar environment, mixed with
unacquainted pigs, have to cope with new pathogens
and food-associated antigens and instead of highly di-
gestible and palatable sow’s milk, weaned pigs have to
rely on a solid dry diet composed with less digestible
proteins [27]. Therefore, the immediate post-weaning
period is marked by a host of immune alterations such
as up regulation of inflammatory cytokines and aug-
mented concentration of acute phase proteins [110].
Furthermore, maintenance of redox balance is of para-
mount importance for effective immunity and health of
the gut [111]. In this sense, dietary strategies that en-
hance endogenous antioxidant capacity in weanling pigs
have been sought. Dietary supplementation with organic
Se significantly improved growth performance, antioxi-
dant ability (higher levels of serum GSH-Px) and plasma
Se content of weaning piglets [92]. Piglets born from
sows supplemented with organic Se had lower serum IL-
1B, IL-6 when challenged with LPS after weaning [112].
Supplemental organic Se was effective in decreasing in-
flammation and oxidative stress in weaning piglets orally
challenged with Salmonella typhimurium by inducing
activity of the lymphocytes and expression of antioxidant
enzymes [2].

Table 2 Summary of in vivo studies evaluating the health benefits of selenium in pigs

Source? Analyzed effect References

Organic Immunomodulation, antioxidant [28, 30, 40-44]
Growth performance, Se tissue concentration [25, 30, 45]
Bioavailability [46]
Selenoprotein activity, gene expression [30, 47]

Organic/inorganic Antioxidant [23, 26, 48, 49]
Immunomodaulation [24, 41, 50]
Growth performance, Se Tissue concentration [26, 38, 41, 50-52]
Selenoprotein activity, gene expression [2, 24]

Selenium sources were organized by their use in pig in vivo studies. The analysis took into account the nature of selenium (i.e., organic, inorganic or both), and

the outcomes of its incorporation into the diet
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As stated above, Se deficiency in pigs results in the le-
thal cardiomyopathy MHD (Mulberry heart disease). It
is believed that reduced antioxidant activity arising from
Se deficiency leads to MHD [1]. The underlying patho-
physiological mechanism behind this myopathy is as-
sumed to be a result of cell membrane damage by free
radicals, which in turn, leads to augmented mitochon-
drial calcium influx and degeneration of muscle fibers
[55]. Importantly, young pigs are the most susceptible to
the disease as Se levels are lower in weanling pigs than
in adults [55]. Indeed, 54% of piglets had Se levels below
reference ranges at weaning [28].

The imunomodulatory role of selenium in pigs
Several studies have evaluated Se as a modulatory agent
of the immune system. Se is incorporated in pig diets to
avert diseases arising from Se deficiencies as well as to
combat various infections by utilizing its known immu-
nomodulatory properties [113-115]. Cellular immune
response, measured by in vitro lymphocyte response to
mitogen stimulations, was lower in weanling pigs fed a
vitamin E and Se deficient diet for 25 d [116]. In the
same study, GSH-Px activity was lower in response to Se
and vitamin E deficiency.

Notably, circulating concentration of Se is significantly
decreased as a result of inflammatory disorders. Pigs
challenged with LPS had 36.8% and 16.6% lower Se con-
centrations in serum and spleen, respectively, which was
accompanied by a decrease in GSH-PX activity in serum,
thymus, and lymph nodes [117]. These results raise the
question: Does the Se requirement change during im-
mune challenges?

High parity sows have decreased concentration of Se
in colostrum and milk; therefore, litters born from older
high-producing sows may present low Se status at birth
and weaning. Additionally, transfer of Se from sows to
piglets is limited [7]. In this sense, numerous studies
have attempted to increase colostrum and milk Se con-
centration by supplementing the dam’s diet. In these
studies, there was comparison of inorganic (selenite) and
organic (Se-yeast) Se supplementation at different levels.
Sows fed the organic Se source had a greater transfer of
Se to the neonate, colostrum, milk, weaned pig, and sow
tissues compared to sows supplemented an inorganic Se
source [29]. However, when sows were fed organic and
inorganic Se sources, Se from organic source was better
transferred to colostrum and milk, and consequently to
piglets, but no influence was observed for immuno-
globulin concentration in colostrum and milk, and
haptoglobin concentration [118].

Piglets fed an organic Se source had decreased serum
concentrations of pro inflammatory cytokines (TNF-a,
IL-1B, and IL-6) when exposed to oxidative stress. More-
over, the expression levels of TNF-a, IL-6, IL-1p, TLR4,
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and nuclear factor-kB (NF-«B) in the liver and thymus
were downregulated in pigs fed organic Se and subjected
to oxidative challenge [30]. Se deficiency in pigs resulted
in spleen pathological changes, which were marked by a
reduction of the white pulp volume and the number of
splenic cord cells. These morphological changes were
accompanied by increased levels of pro-inflammatory cy-
tokines (IL-1B, IL-6, IL-8, IL-17 and TNF-a) and de-
creased levels of anti-inflammatory cytokines (IL-10 and
IL-13) [119]. Likewise, maternal Se supplementation
during gestation decreased the level of inflammation, au-
tophagy and endoplasmic reticulum stress in the thymus
and spleen of weaning piglets induced by the LPS chal-
lenge [42]. Supplementation of growing pigs with Se pre-
vented the upregulation of inflammation-related genes,
namely IL-6, IL-1B, TNEF-q, IL-8, induced by heat stress
in the jejunal mucosa and also exerted a protective effect
against intestinal barrier disruption [43]. In the same
way, gilts supplemented with organic Se had increased
concentration of serum IL-2 and IgG, increased concen-
tration of intestinal IgA, and decreased concentration of
serum IL-6 [44].

Selenium as a potential antimicrobial within food
animals and humans

The nutritional status of the host is closely associated
with its capacity to fight infections. Nutritional defi-
ciency is now recognized to affect viral pathogenicity
rather than to only compromise immune function. Thus,
dietary Se deficiency that impairs an appropriate antioxi-
dant response in the host can alter the viral genome
such that a normally benign or mildly pathogenic virus
can become highly virulent in situations of poor nutri-
tional status combined with oxidative stress [11].

Se supplementation was tested against avian influ-
enza, HON2. Both organic (Se-enriched yeast), and in-
organic (sodium selenite) forms of Se were used at
doses of 0.3 and 0.15 mg/kg of feed. Both forms of Se
significantly decreased viral shedding within the
chicken with the organic form yielding the most ef-
fective results [32]. Dietary Se has also been tested
against the parainfluenza virus within lambs focusing
on the primary and secondary immune responses fol-
lowing the viral challenge. Following infection, the Se-
supplemented lambs showed strengthened immune
activity soon after being inoculated with the virus
[120]. The supplementation with 100 ug Se/d signifi-
cantly increase the number of total T cells and Th
cells and a better virus clearance in humans subjects
receiving a live attenuated polio virus vaccine [31].

The porcine circovirus type 2 (PCV2), is a single-
stranded DNA virus, belonging to the Circoviridae fam-
ily (Group II). PCV2 infection may lead to postweaning
multisystemic wasting syndrome, which seriously
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impacts the pig industry [121]. Studies have been con-
ducted to evaluate the potential antiviral effects of Se
against PCV2. In an in vitro study, PCV2 replication was
inhibited by selenomethionine (SeMet) at a high concen-
tration (6 mmol/L) and the increase in PCV2 replication
by oxidative stress was blocked by SeMet at physio-
logical concentrations (2 or 4mol) [19]. In another
in vitro study using PK15 cells, the inclusion of Se at 2
or 4umol and selenoprotein S overexpression was
capable of blocking the increase in PCV2 DNA copy
number and infected cell numbers [122]. Likewise, DL-
selenomethionine was shown to decrease PCV2 replica-
tion at concentrations of 4—16 pmol/L [14]. The under-
lying mechanism behind the inhibitive effect of DL-
selenomethionine on PCV2 replication is thought to be
mediated through enhanced activity of GSH-Px that pro-
tects the cell against free-radical oxidant injury [14]. Free
radicals, such as H,O, are recognized to promote PCV2
replication [123]. Se inclusion inhibited H,O,-induced
PCV2 replication promotion in vitro [124]. Such results
support the hypothesis of antiviral potential in pigs;
however, the lack of in vivo studies warrants further in-
vestigations on the potential role of Se as an antimicro-
bial agent, namely against viruses.

Conclusion

The literature trends consistently demonstrate the ef-
fectiveness of Se dietary supplementation to maintain
homeostasis of several metabolic processes in food ani-
mals. This is achieved especially through its participation
as a co-factor in selenoproteins, protecting cell mem-
branes against oxidative damage. This is of special im-
portance for the maintenance of optimal immune
activity which will render the host more capable to fight
viral infections. Particularly to pigs, this subject warrants
more research on the immunomodulatory and antiviral
roles of Se using in vivo models and against other
viruses that cause substantial losses for pig production.
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