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Abstract

The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and
other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises
firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the
present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to
the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing
immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived
exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible
molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal
diets.
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Introduction
Apart from nutrient absorption, the intestinal epithelial
layer (IEL) acts as the first line of host defense against
various environmental stress factors. Excessive physio-
logical inflammation and oxidative stress primarily dis-
rupts the inner lining of the gastrointestinal tract such
as the IEL. Impairment of IEL can further contribute to
the progression of inflammatory bowel diseases (IBD),
metabolic disorders, and even mortality in animals [1–
3]. Traditionally antibiotics are administered in animal
diets to enhance the growth performance and prevent
undesired inflammatory responses. Although antibiotics

are beneficial to a certain extent, the development of
antibiotic-resistance in bacterial populations is a major
drawback [4, 5]. Hence, there is a necessity for alterna-
tive, environmental-friendly immunomodulatory com-
pounds to nurture animal health with limited side
effects. Of note, certain bioactive compounds derived
from plants, animals, and microbial sources exhibit
therapeutic benefits beyond basic nutrition. The addition
of these compounds to a certain level in an animal diet
is reported to boost the gut immunity, confer stress re-
sistance, and improve the overall health status [3, 6, 7].
The examples of such potential bioactive compounds in-
clude the traditional and emerging omega-3 polyunsat-
urated fatty acids (ω-3 PUFAs), citrus pectin (CPn), and
the milk-derived exosomes (MDEs). In the previous
in vitro and in vivo trials, these natural nutrients exhib-
ited strong immunomodulatory, antioxidative, and
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antimicrobial properties in controlling chronic gut in-
flammation. This review describes the impact of inflam-
mation and oxidative stress in the intestinal barrier that
contributes to IBD. Further, the role of immunomodula-
tory nutrients as the ω-3 PUFAs, CPn and MDEs in con-
trolling gut inflammation at the level of intestinal barrier
is discussed for utilization in animal nutrition.

Intestinal epithelium – a dynamic barrier
Gastrointestinal tract is secured by a series of protective
layers collectively described as the intestinal mucosa. It
mainly encompasses the mucus layer, gut microbiota,
IEL, immune cells dispersed in lamina propria and lam-
ina. The IEL physically separates the circulatory system
from the external milieu [Fig. 1]. Besides, it is the key
component that orchestrates gut homeostasis by

establishing communication between the microbiota and
the underlying immune cells [8, 9]. Further, the IEL is
formed by a monolayer of intestinal epithelial cells
(IECs) interconnected by different protein complexes
such as tight junction proteins, junction adherent pro-
teins (JAM) and, desmosomes. The tight junction pro-
teins such as occludens (OCLN) and claudins (CLDN)
are the important structural units that strictly governs
the permeability of molecules across the barrier [10]. Be-
sides, the IEL comprises several specialized absorptive
and secretory cell types for digestion, nutrition uptake,
and host defense. Particularly, the enterocytes are the
most abundant (~ 80%) and fast regenerating absorptive
cell type [11, 12]. Goblet cells secrete a gel-like glycopro-
teins called mucin (MUC) that forms a mucous layer
above the IEL. Further, the mucus layer is embedded

Fig. 1 Structure of intestinal epithelium. The intestinal epithelial layer (IEL) ① is the first lining of gastrointestinal tract. It is formed by a single
layer of specialized intestinal epithelial cells (enterocytes, goblet cells, paneth cells, microfold cells, stem cells and enteroendocrine cells) that
physically separates the gut lumen ② from the circulatory system. The IEL is lined by a mucous layer ③, where the gut microbiota ④ is
embedded. The IEL orchestrates gut homeostasis by establishing communication between the gut microbiota and the underlying immune cells
in lamina propria ⑤. The intestinal epithelial cells secrete several antimicrobial peptides ⑥ for host-defense. For references, see text. Figure
created using BioRender.com
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with trillions of commensal bacteria called the gut
microbiota. Paneth cells exhibit the longest life span and
produce antimicrobial proteins such as defensins, lyso-
zymes, and phospholipases [10, 13]. The microfold cells
regulate the adaptive immune responses by presenting
the luminal pathogens and antigens to the immune cells
of lamina propria [10]. Enteroendocrine cells primarily
secrete hormones and other antimicrobial proteins for
different physiological functions. The multipotent intes-
tinal stem cells at the crypt base continuously regenerate
to form other specialized cell types [11]. Altogether, the
IEL forms a dynamic barrier that selectively permits the
nutrients while block the detrimental factors as patho-
gens and toxins from entering into the circulatory
system.

Implications of inflammation and oxidative stress
in intestinal barrier
Gastrointestinal tract is prone to inflammatory and oxi-
dative damages owing to continuous contact with envir-
onmental stress factors. IECs exhibit specialized pattern-
recognizing receptors (PRRs) such as the toll-like recep-
tors (TLRs) and nucleotide oligomerization domain
(NOD)-like receptors for identification of pathogen-
associated molecular patterns (PAMPs) or damage-
associated molecular patterns (DAMPs) [14]. Subse-
quently, the IECs secrete various antimicrobial proteins
and pro-inflammatory signaling mediators such as cyto-
kines, chemokines, and reactive oxygen species (ROS).
These mediators are responsible for the differentiation,
maturation, and activation of other cells in the immune
system [15, 16]. Generally, oxidative stress can occur
when an imbalance exists between the generation of
ROS and the antioxidants available to scavenge [17].
ROS can directly damage the proteins, DNA, and lipids
[17] or indirectly control certain transcription factors
such as the nuclear factor-κB (NF-κB) [18]. NF-κB was
described as the chief stimulator of infection and inflam-
mation that activates more than 200 genes of pro-
angiogenic factors, pro-inflammation, apoptosis, and in-
ducible enzymes [19]. These observations explain the re-
lationship between inflammation and oxidative stress,
that can trigger one another interchangeably [18]. To a
certain degree, physiological stress is necessary, however,
in excess is detrimental. Occasionally, uncontrolled in-
flammation or oxidative stress can arise from defects in
receptors, signal transduction, or during the de novo
biosynthesis of pro-resolution mediators [20]. Particu-
larly, high local concentrations of cytokines such as the
tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and
IL-6 were reported to compromise the IEL by downreg-
ulating the tight junctions and JAMs [21]. Subsequently,
the leaky IEL stimulates leukocyte transmigration, dis-
rupts barrier architecture and IEC maturation [14].

Observations from human and animal studies have re-
ported barrier defects to precede chronic inflammatory
diseases [1]. Therefore, the integrity of IEL is of para-
mount importance in the maintenance of gut but also
the overall health.

Immunomodulatory nutrients for intestinal health
The pursuance of reducing the antibiotics and non-
steroidal anti-inflammatory drugs (NSAIDs) has raised
the interest in utilizing naturally existing bioactive com-
pounds. These bioactive compounds are constituents of
functional food, similar to conventional foods but pro-
vide additional therapeutic benefits. Thus, functional
foods are described as the food prepared using ‘scientific
intelligence’ vital for optimal health [6]. The European
Food Safety Authority (EFSA) has categorized these nat-
ural bioactive or immunomodulatory compounds into,
‘plant extracts’, ‘prebiotics’, ‘probiotics’, ‘animal-by prod-
ucts’, and ‘other substances’ [22]. Plants have been the
major source of energy since time immemorial in
humans and animals. Certain compounds from whole or
part of the plant exhibit immunomodulatory properties
and are commonly referred to as ‘phytobiotics’ or ‘botan-
icals’ [23]. A classic example of a plant- or marine-
derived immunomodulatory compound is the essential
fatty acid such as the ω-3 PUFAs. The common sources
of ω-3 PUFAs are marine phytoplankton, linseed oil, and
fish oil [24, 25]. Since several decades, ω-3 PUFAs are
routinely incorporated into human and animal diets in
moderation for normal physiological functions. How-
ever, supplementation at a certain level result in achiev-
ing therapeutic effects. The ω-3 PUFA-enriched diet in
livestock and poultry was shown to modulate the im-
mune system, improve intestinal morphology, fertility,
stress resistance, and performance [26–29].
The pectins from citrus fruit peels are increasingly rec-

ognized for its multiple health-beneficial properties. Al-
though the application of CPn as a feed additive is
emerging, preliminary studies have reported to exhibit
potential anti-inflammatory, antimicrobial and prebiotic
properties [30–33]. Besides, the food processing indus-
tries utilize CPn as gelling agent and stabilizers for ages
and is regarded safe for consumption [34]. Moreover,
GCS-100 and PectaSol-C are the two commercially
available CPn-based drugs used for treating fibrosis in
humans [35]. In the European Union, Italy is one of the
leading producers of citrus fruits and after juicing, the
peels are discarded as waste. These environmental
wastes can otherwise be utilized as value-added, sustain-
able dietary supplements for animals. Another promin-
ent, animal-based nutritive compound is the milk-
derived bioactive peptides and proteins [36]. Recently,
the exosomes present in milk was identified to carry car-
goes of nucleic acids and peptides that improves the
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immune system, promotes intestinal barrier develop-
ment, and prevent inflammatory diseases [37–40]. Cur-
rently, the milk-derived exosomes (MDEs) are gaining
attention for targeted inflammatory diseases through diet
[40]. Unlike antibiotics, these natural bioactive com-
pounds are effective, environmentally friendly, and safe
for improvising the immune system of animals, while
eliminating stress and discomfort. The immunomodula-
tory properties of ω-3 PUFAs, CPn, and MDEs at the
intestinal-level, based on previous evidence are described
in the following sections.

Omega-3 polyunsaturated fatty acids
Structure and molecular mechanism
Although ω-3 PUFAs are widely known feed additive, its
mechanism in intestinal barrier is poorly established,
which limits the assessment of its efficacy. Based on pre-
vious studies, its possible modes of action are described
presently. Generally, fatty acids are carbon chain struc-
tures of varying length, synthesized in the cytoplasm
from Acetyl-CoA [41]. The two major fatty acid families
as the omega-3 (ω-3) alpha-linolenic acid (ALA; C18:3n-
3) and the omega-6 (ω-6) linoleic acid (LA; C18:2n-6)
that cannot be synthesized by animals, but obtained
from the diet are called essential fatty acids [24, 42].

Basically, PUFAs are involved in cell signaling, immuno-
modulation, and formation of structural components in
the phospholipid cell membranes [43, 44]. An infection
or injury triggers hydrolysis of PUFA from the cell mem-
branes to release certain lipid-based signaling molecules
called eicosanoids [45]. The family of eicosanoids or-
chestrate the initiation, progression, and resolution
phases of the inflammatory responses. Owing to the
higher dietary ratio of ω-6/ω-3 PUFAs in animals, the ei-
cosanoids are predominantly generated from ω-6 arachi-
donic acid (ARA; C20:4n-6) by the enzymatic actions of
cyclooxygenase (COX) and lipoxygenase (LOX) [45–47].
The COX (COX-1/-2/-3) pathway generates 2-series
prostaglandins (PGs) and thromboxanes (TXBs), while
the LOX (5-/12-/15-LOX) generates hydroxyeicosate-
traenoic acids (HETEs), lipoxins (LXs), 4-series leukotri-
enes (LTs), and other oxidative derivatives [47, 48].
Similarly, the downstream derivatives of ω-3 ALA, spe-
cifically the eicosapentaenoic acid (EPA; C20:5n-3) gen-
erates 3-series PGs and TXBs via the COX-2 pathway,
while hydroxyeicosapentaenoic acids (HEPEs) and 5-
series LTs via the LOX (5-/12-/15-LOX) pathway [Fig.
2]. The ARA-derived pro-inflammatory eicosanoids are
widely reported to alter the gut microbial composition,
disrupts the intestinal barrier and play a central role in

Fig. 2 Eicosanoid families of omega-3 and omega-6 polyunsaturated fatty acids involved in intestinal inflammation and resolution. Eicosanoids
are predominantly generated from the ω-6 arachidonic acid (ARA) in phospholipid cell membranes by the enzymatic actions of cyclooxygenase
(COX) and lipoxygenase (LOX). The COX pathway generates 2-series prostaglandins (PGs) and thromboxanes (TXBs), while the LOX generates
lipoxins (LXs), hydroxyeicosatetraenoic acids (HETEs) and, 4-series leukotrienes (LTs) that occasionally stimulates excessive pro-inflammatory
response leading to chronic intestinal inflammatory diseases. On the other hand, the ω-3 eicosapentaenoic acid (EPA) stimulates acute
inflammation by generating 3-series PGs and TXBs via the COX pathway, while hydroxyeicosapentaenoic acids (HEPEs) and 5-series LTs via the
LOX pathway. Recently, certain ARA-derived PGs and LXs were identified to exert both pro-inflammatory and pro-resolution characteristics.
Similarly, the newly identified downstream molecules of EPA such as the E-series resolvins (RvEs) and docosahexaenoic acid (DHA) such as the D-
series resolvins (RvDs), maresins (MaRs), and protectins (PDs) are involved in pro-resolution. Both ω-3 and ω-6 polyunsaturated fatty acids (PUFA)
supports pro-resolution, but overwhelming data reported ω-3 PUFA as the strongest anti-inflammatory agent. This could be due to the difference
in magnitude of action among the eicosanoids involved in the resolution phase of inflammation. For references, see text. Figure created
using BioRender.com
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the pathogenesis of IBD [24, 45, 49]. Therefore, NSAIDs
primarily target the inhibition of ARA and its derivatives
mainly in the COX pathway. Conversely, EPA and doco-
sahexaenoic acid (DHA; C22:6n-3) can replace ARA in
the cell membranes and produce 100-fold weak pro-
inflammatory eicosanoids for enhanced resolution of in-
flammation [50–54]. Furthermore, the newly identified
downstream molecules of EPA such as the E-series
resolvins (Rv)Es and DHA such as the D-series RvDs,
maresins (MaRs), and protectins (PDs) act as antagonists
of inflammation [20, 52, 53, 55] [Fig. 2]. These molecules
not only terminate inflammation but scours inflamma-
tory debris and stimulates antimicrobial defense for gut
homeostasis [20]. Moreover, recently ARA-derived PGs
(PGD2, PGE2) and LX(A4) were identified to exert both
pro-inflammatory and pro-resolution characteristics in a
process called, ‘class-switching’ [20, 52, 55]. These key
findings eventually enumerate the fact that both ω-3 and
ω-6 PUFAs generate anti-inflammatory eicosanoids and
supports pro-resolution. However, overwhelming data
denotes ω-3 PUFA as the strongest anti-inflammatory
agent compared to ω-6 PUFA [21, 25, 43, 50]. This
could possibly due to the difference in magnitude of ac-
tion among the eicosanoids involved in resolution phase
[Fig. 2]. Therefore, further studies are necessary to delin-
eate the potency of pro-resolution eicosanoids to address
the rationale behind ω-3 PUFA’s heightened anti-
inflammatory action.

Impact on intestinal barrier under normal and stress
conditions

In vitro studies The impact of ω-3 PUFAs on the intes-
tinal barrier under normal and inflammatory conditions
were previously evaluated using different IEC models
(Table 1). Particularly, the enterocyte models were
widely utilized as they are primarily involved in nutrition
absorption, host-defence and are the most abundant cell
type in IEL. In these experimental models, the patho-
physiological events of barrier inflammation and oxida-
tive stress was stimulated using different biological and
chemical stressors. Some commonly applied stressors
are pathogens, endotoxins, chemicals such as acetic acid,
hydrogen peroxide (H2O2), dextran sulfate sodium
(DSS), and 2,4,6-trinitrobenzene sulfonic acid (TNBS)
[66, 86]. Moreover, these models were widely reported
to mimic the cardinal signs of IBD [86]. Accordingly, ω-
3 PUFA (ALA or EPA) treatment modulated the integ-
rity and permeability of human Caco-2 cell monolayer in
a dose-dependent manner [56, 57]. The epithelial integ-
rity was determined by measuring the transepithelial
electrical resistance (TEER) across the monolayer of
IECs. Whereas, the barrier permeability was assessed by
measuring the paracellular flux of small molecules such

as horseradish peroxidase (HRP), fluorescein-5-(6)-sul-
fonic acid (FS), or fluorescein isothiocyanate-labelled
dextran 4 kDa (FD4) between the tight junction gaps in
the cell monolayer [56–58]. Further, pre-incubation of
human T84 cells with ω-3 PUFA (ALA, EPA or DHA)
secured the monolayer integrity and permeability from
the damage against IL-4 pro-inflammatory cytokine as
indicated by increased TEER values and decreased FD4
permeability compared to the control [58]. Similarly, the
negative impact of heat-injury in the human Caco-2 cell
monolayer was reduced by ω-3 PUFA (EPA or DHA)
pre-treatment. Specifically, EPA highly enhanced the
barrier integrity (TEER) and expressions of different
tight junction proteins (Zonula occludens [ZO]-1,
OCLN, CLDN-2), while decreased the barrier permeabil-
ity to HRP flux compared to DHA [59].
In the mechanically injured rat IEC-6 cells, ω-3 PUFA

(ALA, EPA, DHA, or docosapentaenoic acid) accelerated
cell proliferation and wound healing by decreasing the
level of pro-inflammatory PGE2 eicosanoid and instead
enhanced the expression of transforming growth factor
(TGF)-β1 [60, 61]. Further, ω-3 PUFA (ALA, EPA, DHA
or fish oil) pre-treatment suppressed the expression of
IL-1β-stimulated genes (COX-2, IL-8, inducible nitric
oxide synthase [iNOS]) or proteins (IL-6/-8, iNOS) that
involved in the pro-inflammatory response of Caco-2
cells and instead activated the protein expression of in-
hibitor of nuclear factor kappa B (IκB) and peroxisome
proliferator-activated receptor(PPAR)γ [62, 63]. In an-
other study, compared to EPA, DHA highly suppressed
the expression of genes or proteins that involved in the
pro-inflammatory response (NF-κβ1, IL-1R1/-6/-8) of
human adult IECs (Caco-2 and NCM460 cells), fetal
IECs (H4 cells), and neonate necrotizing enterocolitis
(NEC)-IECs that challenged by IL-1β [64].
Moreover, ω-3 PUFA conferred antimicrobial activity

against the common feed contaminants such as the
mycotoxin deoxynivalenol (DON) and bacterial lipopoly-
saccharides (LPS). Accordingly, ω-3 PUFA (EPA or
DHA) pre-treatment of porcine IPEC-1 cells reversed
the DON-induced damage on cell proliferation, viability,
tight junction proteins (CLDN-1, ZO-1), and the mono-
layer integrity (TEER) [65]. Also, the DON-induced cell
membrane damage was inhibited by ω-3 PUFA as indi-
cated by marked reduced in the cytosolic lactate de-
hydrogenase (LDH) release into the cell culture medium.
Additionally in the same study, ω-3 PUFA reduced the
number of necrotic cells and the expression of proteins
that involved in DON-induced apoptosis or necroptosis
signaling such as the caspase-3/-7, TNF receptor-1
(TNFR1), receptor-interacting protein kinase (RIPK)-1/-
3, phosphorylated mixed lineage kinase-like protein
(MLKL), phosphoglycerate mutase family 5 (PGAM5),
dynamin-related protein 1 (DRP1) and high mobility
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Table 1 Effects of omega-3 polyunsaturated fatty acids in the intestinal cell and animal models

Model of study Stress by ω-3 PUFA(s)
assessed

Immune response and morphological changes Reference

In vitro

Human Caco-2 cells Non-stimulated EPA (↓HRP flux, =TEER) at 100 μmol/L PUFA for 24 h; ↑LDH release
> 100 μmol/L PUFA for 48 h

[56]

Human Caco-2 cells Non-stimulated ALA or EPA (↑FS flux, ↓TEER) until 200 μmol/L PUFA; ↑LDH release for
200 μmol/L PUFA

[57]

Human T84 cells IL-4 ALA, EPA or DHA (↑TEER, ↓FD4 flux) for 100 μmol/L PUFA [58]

Human Caco-2 cells Heat injury EPA or DHA ↑(TEER, ZO-1, OCLN, CLDN-2); ↓HRP flux [59]

Rat IEC-6 cells Mechanical
wound

ALA, EPA, DHA or
Docosapentaenoic
acid

↑(TGF-β1, cell proliferation and migration in wound healing);
↓PGE2

[60, 61]

Human Caco-2 cells IL-1β ALA, EPA or DHA ↓(IL-6, IL-8, iNOS); ↑PPARγ; =IκB [62]

Human Caco-2 cells IL-1β ALA or fish oil ↓(COX-2, IL-8, iNOS) [63]

Human Caco-2 cells, human
NCM460 cells, fetal H4 cells or
neonate NEC-IEC cells

IL-1β EPA or DHA ↓(NF-κβ1, IL-8, IL-6, IL-1R1) [64]

Porcine IPEC-1 cells DON EPA or DHA ↑(Cell proliferation, viability, LDH release) until 25 μg/mL
PUFA; ↑(TEER, CLDN-1, ZO-1) at 12.5 μg/mL PUFA; ↓(FD4 flux,
caspase-3/-8, necrotic cells, ROS TNFR1, RIPK-1/-3, MLKL,
PGAM5, DRP1, HMGB1) at 12.5 μg/mL PUFA

[65]

Porcine IPEC-J2 cells LPS, DSS or
H2O2

EPA or DHA ↑(Cell proliferation, viability); ↓(LDH release, caspase-3/-7); =
NO2

−
[66]

Pig ileum explants LPS Fish oil ↓LPS permeability; =TEER [67]

In vivo

Rat Acetic acid-
colitis

ω-3 PUFA-rich lipid
emulsion

↓(PGE2, LTB4, TXB2, macrophage infiltration, mucosal and
tissue damage); =LTC4

[68]

Rat TNBS-colitis ALA ↓(ICAM-1, VCAM-1, VEGFR-2); =HO-1 [69]

Rat TNBS-colitis Fish oil ↓(COX-2, PGE2, LTB4, NF-κB); =(TNF-α, IL-1β, PPARγ, mucosal
damage, inflammatory cell infiltration)

[70]

Rat DSS-colitis Fish oil ↓(Disease activity, colon weight/length ratio, mucosal
ulceration, crypt dilation, goblet cell depletion, inflammatory
cell infiltration, tissue damage, MPO, iNOS, AP, COX-2, LTB4,
TNF-α); ↑glutathione; =IL-1β

[71]

Rat DSS-colitis MaR1 ↓(Disease activity, colon shortening, mucosal damage,
inflammatory cell infiltration, PGE2, MPO, ROS, TLR4, p-NF-κB-
p65, TNF-α, IL-6, IL-1β); ↑(ZO-1, OCLN, NRF2, HO-1)

[72]

Neonate rats Hypoxia and
formula feed-
induced NEC

DHA ↓(TLR2/4, PAFR, tissue necrosis, incidence of disease); =
phospholipase A2-II in small and/or large intestine

[73]

Maternal rats Formula feed-
induced NEC

EPA or DHA ↑(PGE2 receptor EP3, PGD2 receptor DP2, PPARγ) and ↓(IκBα/
β, mucosal damage, inflammatory cell infiltration, incidence
of disease) in premature rat pups

[74]

Mice Acute or
chronic
DSS-colitis

MaR1 ↓(Disease activity, MPO, NF-κB, IL-1β, IL-6, TNF-α, INFγ, ICAM-1,
crypt damage, inflammatory cell infiltration, colon wall thick-
ness, colon shortening, hyperaemia and tissue damage)

[75]

Peritonitis mice TNBS-colitis RvE1 ↑Tissue repair; ↓(leukocyte infiltration, COX-2, TNF-α, IL-12p40,
iNOS, MPO); =(INF-γ, IL-4, IL-10, TGF-β)

[76]

Mice Citrobacter
rodentium

Fish oil ↑IL-10; ↓(mucosal damage, inflammatory cell infiltration,
apoptotic cells, Ki67+ enterocytes, MIP-2, keratinocyte
cytokine, MCP-1, IFN-γ, IL-6, IL-17A, FD4 intestinal
permeability); =(mucosal adherent pathogen count, TNF-α,
TGF-β, FoxP3)

[77]

Mice LPS Fish oil ↓(COX-2, TLR4, MyD88, NF-κB, IL-1β, IL-6, TNF-α); =(iNOS, MCP-
1, IL6, TNF-α) in small intestine

[78]

Mice LPS EPA or DHA ↑(E-cadherin, ZO-1, OCLN, GPR120, FFAR-2, MUC2, IL-10, tissue [79]
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group box-1 (HMBG1) [65]. Similarly, in our previous
study, ω-3 PUFA (EPA and DHA) treatment significantly
enhanced the proliferation of porcine IPEC-J2 cells. It
further inhibited the apoptosis (caspase-3/-7) and se-
cured the cell viability or cell membrane integrity (LDH
release) that was damaged by different biological and
chemical stressors as LPS, DSS, and H2O2 [66].

In vivo studies Previously ω-3 PUFA secured the intes-
tinal barrier and decreased the disease activity in both hu-
man and animal models of IBD (Tables 1 and 2). At the
intestinal level, disease activity was assessed by various pa-
rameters not limited to the expression of pro-
inflammatory mediators, intestinal weight/length ratio, vil-
lus height/crypt depth (V/C) ratio, inflammatory cell infil-
tration, epithelial and mucosal morphology. Accordingly,
in rat acetic acid-colitis, ω-3 PUFA reduced the expression
of pro-inflammatory eicosanoids (PGE2, LTB4, TXB2),
macrophage infiltration, mucosal, and tissue damage [68].
Following this, ALA supplementation in TNBS-colitis rats
inhibited the protein expression of intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule
(VCAM-1), and vascular endothelial growth factor

receptor-2 (VEGFR-2) that mediates leukocyte recruit-
ment and angiogenesis in IBD [69].
Further, fish oil treatment supported the recovery of

TNBS- or DSS-induced colitis in murine models. Accord-
ingly, fish oil reduced the gene or protein expression of
pro-inflammatory eicosanoids (PGE2, COX-2, LTB4 or
LTC4) and the molecules of cytokine signaling (TNF-α,
IL-6 or NF-κB) [70, 71]. The level of disease-specific en-
zymatic markers such as iNOS, alkaline phosphatase and,
myeloperoxidase (MPO) were also suppressed [71]. Add-
itionally, macroscopic injury of the intestinal mucosa (ul-
ceration, necrosis, inflammation) [70, 71], inflammatory
cell infiltration [72], colon wall thickness, and, the weight/
length ratio [72] were significantly reduced. Moreover, fish
oil restituted the goblet cell abundance [71], glutathione
level [71], mucosal, and tissue integrity [70, 71].
For the first time, DHA-derived MaR1 and EPA-

derived RvE1 were shown to suppress the disease activity
in murine colitis. Accordingly, MaR1 supplementation in
DSS-colitis rats increased the expressions of different
tight junction proteins (ZO-1, OCLN), while inhibited
the mucosal damage, colon shortening, inflammatory
cell infiltration, and expressions of different pro-

Table 1 Effects of omega-3 polyunsaturated fatty acids in the intestinal cell and animal models (Continued)

Model of study Stress by ω-3 PUFA(s)
assessed

Immune response and morphological changes Reference

repair); ↓(NF-κB-p65, TAK1, INFγ, TNF-α, IL-1β, IL-6); =(TLR4, je-
junum villus hight, crypt depth, V/C ratio)

Pigs Non-stimulated Fish oil ↓(PGE, PGI2, TXB2, crypt depth); =(colonic mucosal
morphology)

[80]

Sows Non-stimulated Linseed oil ↓(δ-5/-6 desaturase, HRP flux until d 28, villus height at d 0,
crypt depth at d 7) in piglet ileum; =ileum enterocyte
maturation in piglets

[81]

Sows Non-stimulated Extruded linseed ↑(FD4/LPS permeability between d 0–28 in piglet jejunum
explant); =(FD4/LPS permeability at d 52, IL-8, TNF-α in LPS-
challenged piglet jejunum explants)

[82]

Weaned piglets LPS Fish oil ↑(Villus height, V/C ratio, OCLN, CLDN-1); ↓(diamine oxidase,
TNF-α, PGE2, caspase-3, HSP70, NF-κB-p65, TLR4, MyD88,
IRAK1, TRAF6, NOD2, RIPK-2); =(NF-κB-p65, NOD1, crypt depth)
in jejunum and/or ileum

[83]

Weaned piglets DSS-colitis Fish oil ↑(Mitotic figures in enterocytes, UPC3, disease remission);
=(mucosal damage, PPARγ, PGC1-α, TNF-α, KGF)

[84]

Suckling piglets Ischemia-injured
ileum

EPA ↓PGE2; ↑(TEER, H3-mannitol/C14-inulin flux, COX-2); =mucosal
damage

[85]

The arrow indicates an increase (↑) or decrease (↓) in the level or activity of the different parameters analysed, “=” symbol designates unchanged parameters. ALA
Alpha-linolenic acid, AP Alkaline phosphatase, COX Cyclooxygenase, DHA Docosahexaenoic acid; DON: Deoxynivalenol; DRP1: Dynamin-related protein 1, DSS
Dextran sulphate sodium, 17,18-EEP 17,18-Epoxyeicosatetraenoic acid, EPA Eicosapentaenoic acid, FD4 Fluorescein isothiocyanate-labelled dextran 4 kDa, FFAR-2
Free fatty acid receptor-2, FS Fluorescein sulfonic acid, 5-FU 5-Fluorouracil, GPR G-protein coupled receptor, HMGB1 High mobility group box-1 protein, HO-1 Heme
oxygenase-1, H2O2 Hydrogen peroxide, HRP Horseradish peroxidase, HSP70 Heat shock protein-70, IκB Inhibitor of nuclear factor kappa B, ICAM-1 Intercellular
adhesion molecule-1, IEC Intestinal epithelial cells, IL Interleukin, INFγ Interferon γ, iNOS Inducible nitric oxide synthase, IRAK1 Interleukin-1 receptor-associated
kinase-1, 8-Iso PGF3α 8-Iso prostaglandin F3α, KGF Keratinocyte growth factor, LDH Lactate dehydrogenase, LPS Lipopolysaccharides, LT Leukotriene, MaR Maresin,
MCP-1 Monocyte chemoattractant protein-1, MIP-2 Macrophage inflammatory protein-2, MLKL Phosphorylated mixed lineage kinase-like protein, MPO
Myeloperoxidase, MUC Mucin, MyD88 Myeloid differentiation primary response 88, NEC Necrotizing enterocolitis, NF-κB Nuclear factor-κB, NO2−/NO3− Nitrite/nitrate,
NOD Nucleotide-binding oligomerization domain-containing protein, NRF2 Nuclear factor erythroid 2-related factor 2, OCLN Occludin, PAFR Platelet-activating
factor receptor, PGAM5 Phosphoglycerate mutase family 5, PG Prostaglandin, PGC1-α PPARγ co-activator 1-α, PPAR Peroxisome proliferator-activated receptor,
PUFA Polyunsaturated fatty acid, RIPK Receptor-interacting protein kinase, ROS Reactive oxygen species, RvE E-series resolvin, TAK1 Transforming growth factor-β-
activated kinase 1, TEER transepithelial electrical resistance, TGF Transforming growth factor, TNBS 2,4,6-trinitrobenzene sulfonic acid, TNF Tumour necrosis factor,
TNFR1 Tumour necrosis factor receptor-1, TRAF6 Tumour Necrosis Factor Receptor-Associated Factor-6, TXB Thromboxane, UPC3 PPARγ-responsive gene
uncoupling protein-3, V/C Villus height/crypt depth, VCAM-1 Vascular adhesion molecule-1, VEGFR-2 Vascular endothelial growth factor-2, ZO Zonula occludens
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inflammatory mediators (PGE2, MPO, ROS, TNF-α, IL-
1β/-6) [72]. Importantly, MaR1 inhibited the protein ex-
pression of TLR4/NF-κB signaling (TLR4, p-NF-κB-p65)
and instead activated the anti-inflammatory nuclear fac-
tor erythroid 2-related factor 2 (NRF2)/heme oxygenase-
1 (HO-1) signaling [72]. Similarly, MaR1 intervention
ameliorated the severity of acute and chronic DSS-colitis
in mice by reducing epithelial damage, inflammatory cell
infiltration, hyperaemia, colon wall thickness, colon
shortening, and expression of pro-inflammatory genes or
proteins (MPO, NF-κB, IL-1β, IL-6, TNF-α, interfero-
n[INF]γ, ICAM-1) [75]. Likewise, RvE1 facilitated tissue
repair in peritonitis mice with TNBS-colitis, while sig-
nificantly reduced the leukocyte infiltration, MPO

activity, and the expression of genes corresponding to
pro-inflammatory response (COX-2, TNF-α, IL-12p40,
iNOS) [76]. Generally, a steep oxygen gradient exists in
the intestinal barrier to support the sustenance of gut
microbiota and other barrier functions. An imbalance in
the gradient can instigate barrier degenerative diseases
such as ischemic-reperfusion and NEC [103]. Earlier, ω-
3 PUFA remediated the experimental NEC induced by
hypoxia, formula feeding, or its combination in murine
models. Accordingly, DHA intervention significantly de-
creased tissue necrosis, incidence of disease, and the
gene expression of pro-inflammatory mediators such as
TLR2/4 and platelet-activating factor receptor (PAFR) in
the NEC-rat pups [73]. Moreover, ω-3 PUFA (EPA or

Table 2 Clinical impacts of omega-3 polyunsaturated fatty acids in the patients with inflammatory bowel disease

Clinical study Under IBD
medications

ω-3
PUFA(s)
assessed

Immune response and morphological changes Reference

Ethanol-induced
duodenum lesions

No Fish oil ↑LTC5; ↓endoscopic and histologic lesions; =(PGE2, PGI2, TXB2) [87]

Pediatric ulcerative
colitis in remission

Yes EPA ↓LTB4; =histological score [88]

Active distal
proctocolitis

No Fish oil ↑Clinical, endoscopic and histological remission [89]

Active ulcerative
colitis

No Fish oil ↑Clinical and histological remission [90]

Active ulcerative
colitis

No Fish oil ↑Endoscopic remission; =clinical and histological score [91]

Active ulcerative
colitis

No Fish oil ↑Clinical, endoscopic and histological remission [92]

Active ulcerative
colitis or CD

Yes Fish oil ↑Clinical, endoscopic and histological remission [93]

Active ulcerative
colitis or CD

Yes Fish oil ↓(PGE2, PGI2, TXB2) [94]

Active ulcerative
colitis

Yes Salmon fillet ↑Clinical, endoscopic and histological remission [95]

Active ulcerative
colitis

Yes EPA ↑Clinical and endoscopic remission [96]

Ulcerative colitis in
remission

No Fish oil ↑Temporary clinical, macroscopic and histologic remission; delayed early relapse [97]

Ulcerative colitis in
remission

Yes EPA ↑Endoscopic and histological remission [98]

Ulcerative colitis in
remission

Yes EPA ↑(IL-10, SOCS3, IL-22, HES-1, KLF-4, goblet cell abundance, endoscopic and histo-
logical remission); ↓phospho-STAT3; =(IL-10, SOCS3, STAT3, Ki67, c-MYC, LGR5, MUC2,
HES-1, KLF-4)

[99]

Active ulcerative
colitis or in remission

Yes Fish oil =(Bleeding, disease relapse, endoscopic and histological score) [100]

Active ulcerative
colitis

Yes Fish oil =Endoscopic and histologic scores [101]

Quiescent ulcerative
colitis

Yes EPA and
DHA

=(Disease relapse, endoscopic and histological score) [102]

The arrow indicates an increase (↑) or decrease (↓) in the level or activity of the different parameters analysed, “=” symbol designates unchanged parameters. CD
Crohn’s disease, COX Cyclooxygenase, c-MYC c-Myelocytomatosis proto-oncogene, HES-1 Hairy and enhancer of split-1, IBD Inflammatory bowel disease, IL
Interleukin, Ki67 Cell proliferation marker, KLF-4 Kruppel-like factor-4, LGR5 Leucine-rich repeat-containing G-protein coupled receptor 5, LT Leukotriene, PG
Prostaglandin, PUFA Polyunsaturated fatty acid, p-STAT3 Phosphorylated signal transducer and activator of transcription 3, SOCS3 Suppressor of cytokine
signalling-3, STAT3 Signal transducer and activator of transcription-3, TXB Thromboxane
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DHA) administration in maternal rats during gestation,
significantly accumulated in the intestinal phospholipids
of prematurely delivered rat pups. This subsequently
ameliorated the impact of experimental NEC induced in
rat pups by inhibited the gene expression of pro-
inflammatory IκBα/β and instead activated the anti-
inflammatory PPARγ gene. Besides, the gene expression
of PGE2 receptor EP3 and PGD2 receptor DP2 was in-
creased, while the mucosal damage, inflammatory cell
infiltration, and incidence of disease was decreased [74].
As observed in cellular studies, ω-3 PUFA supported the

recovery from bacterial infections in murine models. Spe-
cifically, fish oil administration in mice significantly re-
duced the Citrobacter rodentium (C. rodentium)-induced
mucosal damage, inflammatory cell infiltration, enterocyte
proliferation, apoptosis, and intestinal permeability to
FD4. Also, fish oil increased the gene expression of anti-
inflammatory cytokine IL-10, while suppressed the gene
expressions of pro-inflammatory cytokines and chemo-
kines such as IL-6, IL-17A, IFNγ, monocyte chemoattract-
ant protein-1 (MCP-1), keratinocyte cytokine, and
macrophage inflammatory protein-2 (MIP-2) [77]. Fur-
ther, ω-3 PUFA (EPA, DHA or fish oil) intervention in
mice, attenuated the expression of genes or proteins in-
volved in LPS-activated TLR4/NF-κB signaling (TLR4,
MyD88, NF-κB-p65, NF-κB or transforming growth
factor-β-activated kinase [TAK]1) and the downstream
pro-inflammatory response (TNF-α, IL-1β/-6, INFγ or
COX-2) [78, 79]. Besides, the expression of tight junction
proteins (E-cadherin, ZO-1, OCLN), ω-3 PUFA receptor
gene (G-protein coupled receptor [GPR]120), and tissue
repair were significantly enhanced. The gene expression of
anti-inflammatory cytokine IL-10, MUC2, and its regula-
tory gene, free fatty acid receptor-2 (FFAR-2) were also
substantially increased [79].
Apart from infections, weaning imparts tremendous

inflammatory and metabolic stress in pigs due to
changes in gastrointestinal physiology [104]. Previously,
administration of fish oil in pigs significantly downregu-
lated the protein expression of pro-inflammatory eicosa-
noids (PGE, PGI2, TXB2) through ω-3 PUFA
enrichment in the intestinal phospholipids. Although the
morphology of colonic mucosa remained stable, the
crypt depth was significantly reduced [80] (Table 1). Fur-
ther, fish oil administration during the course of gesta-
tion to lactation in sows markedly increased the ω-3
PUFA levels in ileal phospholipids. The maternal diet
subsequently instigated an age-dependent decrease in
villus height (d 0), crypt depth (d 7), and HRP perme-
ability (d 0–28) in the piglet ileum. These effects were
reported to prevent the intestinal pathologies associated
with IEL functioning during the neonatal period [81].
In similar maternal physiology, supplementation of ex-

truded linseed oil temporarily increased the FD4/LPS

permeability in the piglet jejunum explants until d 28 and
thereafter decreased at d 52 [82]. The distinct outcome of
these two trials could have possibly aroused from a differ-
ence in linseed oil formulation administered, dose-effect,
or animal physiology. Nevertheless, the influence of ma-
ternal dietary ω-3 PUFA on piglet intestinal development
and health status is unclear and hence needs further inves-
tigations. In another study, fish oil administration in
weaned piglets protected from LPS-induced damage on
the intestinal barrier by enhancing the expressions of tight
junction proteins (OCLN, CLDN-1), villus height, and V/
C ratio [83]. Besides, the expression of genes correspond-
ing to the TLR4 pathway such as the TLR4, myeloid differ-
entiation primary response 88 (MyD88), interleukin-1
receptor-associated kinase-1 (IRAK1), and TNFR-
associated factor-6 (TRAF6) were suppressed. The expres-
sion of inflammatory genes as NOD2 and RIPK-2, and the
expression of proteins as diamine oxidase, caspase-3, and
heat shock protein-70 (HSP70) were also significantly
downregulated [83]. Furthermore, fish oil supported the
remission of DSS-colitis in the early-weaned piglets by en-
hancing enterocyte mitosis and gene expression of
PPARγ-responsive uncoupling protein-3 (UPC3) [84].
Moreover, EPA intervention in piglets moderately sup-
ported the recovery of ileum ischemic injury by decreasing
the expression of PGE2 protein and barrier flux to H3-
mannitol/C14-inulin, while increased the expression of
COX-2 gene and TEER values [85]. In another study that
administered fish oil in pigs, exhibited a significant reduc-
tion in LPS permeability across the ileal explants [67].
In clinical settings, ω-3 PUFAs are administered either

individually or as an immunological adjuvant for con-
trolling different IBDs including Crohn’s disease (CD),
ulcerative colitis, and distal proctocolitis (Table 2). Ac-
cordingly, in subjects with ethanol-induced duodenal in-
jury, fish oil administration relieved macroscopic lesions
by increased the protein expression of anti-inflammatory
eicosanoid, LTC5 [87]. Also, EPA suppressed the muco-
sal expression of pro-inflammatory eicosanoid as LTB4
in pediatric ulcerative colitis under remission [88]. Fur-
ther, administration of fish oil in patients with active ul-
cerative colitis or distal proctocolitis, witnessed a
marked reduction in disease activity as observed from
improvements in clinical, endoscopic, and histological
scores [89–92]. In active ulcerative colitis or CD patients
undertaking IBD medications, ω-3 PUFA (fish, fish oil or
EPA) administration reduced the disease activity [93, 95,
96] and protein expression of pro-inflammatory eicosa-
noids (PGE2, PGI2, TXB2) [94] by incorporating in the
mucosal phospholipids [93–95]. Similarly, the health sta-
tus of ulcerative colitis patients in remission with or
without IBD medication was improved by fish oil or
EPA administration [97–99]. Specifically, the disease ac-
tivity and mucosal inflammation were remediated by
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activating the gene expression of anti-inflammatory me-
diators such as the IL-10, and suppressor of cytokine
signaling-3 (SOCS3), while reduced the protein expres-
sion of phosphorylated signal transducer and activator of
transcription 3 (p-STAT3). Additionally, the abundance
of goblet cells, IL-22, and proteins that modulate the
secretory and absorptive cell lineage such as the hairy
and enhancer of split-1 (HES-1) and kruppel-like factor-
4 (KLF-4) were also increased [99]. On the contrary, few
studies have reported that ω-3 PUFA (fish oil, EPA, or

DHA) had no beneficial effects in the patients with ei-
ther active, quiescent, or remitted ulcerative colitis
under IBD medications [100–102]. Various factors could
have contributed to the differential outcome of ω-3
PUFA diet in patients such as the age, metabolic status,
dose, or the impact of co-administered IBD medications.
A schematic representation summarizing the anti-
inflammatory and antioxidative mechanisms of ω-3
PUFA through NF-κB inhibition in IEL is reported in
Fig. 3. Table 1 and 2.

Fig. 3 Model summarizing the immunomodulatory mechanisms of omega-3 polyunsaturated fatty acids in the intestinal epithelium. In
arachidonic acid (ARA)-enriched cell membranes, during an infection or injury, pathogen-associated molecular patterns (PAMPs) or damage-
associated molecular patterns (DAMPs) binds with the host-specific pattern-recognizing receptors (PRRs) and activate the nuclear factor-κB (NF-
κB) signaling to release pro-inflammatory cytokines, chemokines and reactive oxygen species (ROS). Subsequently, these mediators recruit the
inflammatory cells from lamina propria and exert a strong pro-inflammatory response. Pro-inflammation also damages the integrity of the
epithelial barrier by disrupting the tight junction proteins. Loss of epithelial integrity aggravates inflammation by facilitating the translocation of
luminal pathogens and endotoxins into the circulatory system (Black lines). Dietary supplementation of eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) ameliorates the pro-inflammatory response by replacing ARA in specific cell membrane G-protein-coupled receptors
(GPCR) and instead stimulates the production of anti-inflammatory cytokines and antioxidants (Red lines). For references, see text. Figure created
using BioRender.com
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Citrus pectin
Structure and molecular mechanism
CPn is a highly branched, complex heteropolysaccharide
derived from the peels and pomace of citrus fruits. The
structure of CPn involves a covalently linked, galacturo-
nic acid backbone with three major polysaccharide units
of homogalacturonan, rhamnogalacturonan, and
substituted galacturonans [105, 106]. Generally, the
small intestine cannot assimilate native pectins due to its
large molecular weight (60–300 kDa), complex structure,
and higher degrees of esterification (DE ~ 70%). How-
ever, pH or enzymatic treatment yields compounds of
low molecular weight (15 kDa) and reduced DE (< 5%).
The modified CPn exhibit enhanced intestinal absorp-
tion and transportation [107, 108]. Interest in utilizing
CPn as a potential feed additive is emerging from the

recent pieces of evidence on its anti-inflammatory, anti-
microbial, and prebiotic activities [30, 34, 109, 110].
Owing to the complex physiochemical structure of CPn,
its precise molecular mechanism is fairly established
[34]. However, previous reports on its ability to interact
with TLRs, Galectin-3 (Gal-3) or produce short-chain
fatty acids (SCFAs) could be attributed to part of its im-
munomodulatory mechanisms in the intestinal barrier
[30, 98] [Fig. 4]. Interestingly, non-digestible carbohy-
drates and LPS share a structural similarity with respect
to carbohydrate-containing regions that interact with
IECs and other immune cells [98]. CPn belongs to the
category of non-digestible carbohydrates and was shown
to interact with TLR2/4 that resulted in modulating NF-
κB in both IECs and immune cells [30, 98, 100–102,
105–114]. Another mechanism by which CPn controls

Fig. 4 Model summarizing the immunomodulatory and antimicrobial mechanisms of citrus pectin in the intestinal epithelium. (A) Pathogen-
associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) activate the nuclear factor-κB (NF-κB)-mediated pro-
inflammatory response and damages the epithelial integrity as described in Fig. 3. (Black solid lines). Dietary citrus pectin (CPn) blocks the cell
surface pattern-recognizing receptors (PRRs) and prevents the PAMPs or DAMPs from activating NF-κB (Red solid lines). (B) During infection or
injury, extracellular Galectin-3 (Gal-3) acts as ligands to cell-surface PRRs and activates NF-κB-mediated pro-inflammatory response (Black solid
lines). CPn can modify the cell-surface PRRs and prevent the Gal-3 from binding (Red solid lines). Alternatively, cells secrete intracellular Gal-3 that
acts as PRRs to pathogens or endotoxins and recruits immune cells enabling opsonization (Black dotted lines). CPn can directly bind the
intracellular Gal-3 and block its opsonin function (Red dotted lines). (C) CPn binds with mucin glycoproteins and forms gel-matrix that selectively
support the adhesion of probiotics and gut commensals, while repel the pathogens (Red solid lines). Alternatively, CPn directly interacts with the
pathogen and inhibits its growth or indirectly give rise to short-chain fatty acids (SCFAs) that protects barrier health (Red dotted lines).
Abbreviations: ROS, Reactive oxygen species. For references, see text. Figure created using BioRender.com
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inflammation is by inactivating Gal-3 signaling proteins.
Gal-3 belongs to the lectin family, a class of
carbohydrate-binding proteins that dispersed in both
intracellular and extracellular regions. It possesses a
unique carbohydrate-recognition domain (CRD) that
binds to the β-galactoside sugars [106, 115]. Gal-3 was
reported to involve in the pathogenesis of microbial in-
fections, cancer, and several other inflammatory diseases
[116, 117]. The mechanism by which Gal-3 regulates in-
flammatory response is multifaceted. In intestine, it
stimulates pro-inflammatory responses by acting as li-
gands to TLRs of IECs [117, 118] [Fig. 4B]. Previously,
in rat pups, induction of experimental NEC was shown
to activate Gal-3-mediated TLR4/NF-κB signaling [118].
Alternatively, Gal-3 act as PRRs to pathogens or LPS
and recruit immune cells for opsonization [117] [Fig.
4B]. Of note, orally or intravenously administered CPn
are able to cross the intestinal barrier and inhibit Gal-3-
mediated inflammation by binding its CRD region [119,
120] [Fig. 4B]. Currently, the application of CPn as Gal-3
inhibitor is emerging as a novel strategy for treating can-
cer and many inflammatory diseases [35, 106, 108, 121].
From all these observations, it could be possible that
certain carbohydrate regions of CPn, LPS, and Gal-3 that
binds to IECs or immune cells are quite similar. This
could have enabled CPn to prevent inflammation by
competing with LPS or Gal-3 for the TLR-binding re-
gion [Fig. 4A, B]. Moreover, the SCFAs produced during
the fermentation of dietary fibers such as CPn was re-
ported to improve the intestinal barrier functions [98].

Impact on intestinal barrier under normal and stress
conditions

In vitro studies CPn self-assembles into dense hydrogel
matrix on contact with the mucin glycoproteins of IEL
[122] [Fig. 4C]. The gel-forming ability of CPn (DE94%
and DE25%) was demonstrated using the commercially
available mucins and on the mucosal surface of porcine
colonic tissues. In this study, CPn-DE94% formed a gel
matrix at the tissue surface, while CPn-DE25% perme-
ated deeper towards the tissue wall. Besides, the net
electrical charge of CPn influenced the rheological
strength of the gel [123]. Following, different oligosac-
charides of CPn were shown to cross the Caco-2 cell
monolayer based on the degree of polymerization in a
transwell culture system. Particularly, only the short-
chain galectins and arabinogalactans could transverse,
but not the galacturonic acid [107].
A recent study demonstrated the immunomodulatory

behaviour of in vitro digested citrus pulp on the intes-
tinal barrier using IPEC-J2 cell model. Specifically, it
inhibited the gene expressions of TLR4 and CLDN-1 and
instead activated NOD1 under a stress-free environment

[124] (Table 3). Further, many studies demonstrated the
barrier protective properties of CPn under inflammatory
conditions. Accordingly, CPn with different degrees of
methyl esters (DM32%, DM59%, and DM64%) secured
the integrity (TEER) and reduced the permeability (luci-
fer yellow flux) of mouse CMT93 cell monolayer that
was disrupted by the pathogenic challenge of C. roden-
tium. Interestingly, using a reporter cell assay, CPn was
shown to activate the NF-κB/AP-1 signaling via TLR2 in
the CMT93 cells independent of C. rodentium challenge.
Additionally, CPn imparted anti-adhesive effects on C.
rodentium by interacting with the pathogen instead of
CMT93 cells [113]. Likewise, both native and enzymati-
cally modified citrus residues prevented the Caco-2 cells
from secreting IL-8 upon the pathogenic challenge of
Salmonella typhimurium (S. typhimurium) and Listeria
monocytogenes (L. monocytogenes) [33]. In this study, cit-
rus treatment selectively supported the cellular adhesion
of probiotics (Lacticaseibacillus casei and Bifidobacter-
ium lactis), while repelled the pathogens (S. typhimur-
ium and L. monocytogenes) [Fig. 4C]. Moreover, the
enzymatically modified citrus residues exhibited en-
hanced antibacterial and prebiotic activities in compari-
son to the unmodified [33]. In another study, CPn
(DM30%, DM56%, and DM74%) secured the integrity
(TEER) of T84 cell monolayer from the barrier disrupt-
ing agent such as the phorbol esters [114].

In vivo studies Previously, CPn administration in rats
under normal physiology, significantly increased the mu-
cosal proliferation (Ki67+ cells), intestinal length, weight,
and the level of cecum SCFAs [125](Table 3). In agree-
ment with cellular studies, CPn potentially ameliorated
the intestinal barrier inflammation under different stress
conditions in animal models. Accordingly, in rats with
methotrexate-colitis, supplementation of CPn reduced
the intestinal barrier permeability, bacterial transloca-
tion, MPO expression, and intestinal water content. It
further stimulated mucosal replenishment as indicated
by an increase in mucosal wet weight, protein, and nu-
cleic acid content [126]. In the mice with acetic acid-
colitis, CPn reduced the peritoneal granulocyte adhesion,
intestinal tissue injury, ROS production, and MPO ex-
pression [127]. Similarly, in the mice with doxorubicin-
induced ileitis, CPn-DM7% administration substantially
reduced the crypt cell apoptosis, inflammatory cell infil-
tration, and protein expression of pro-inflammatory cy-
tokines and chemokines (TNF-α, MCP-1, IL-6,
chemokine C-X-C motif ligand [CXCL]-1) [32]. In the
DSS-colitis mice, supplementation of CPn or citrus resi-
dues (from juice extraction) decreased the expression of
pro-inflammatory genes (TNF-α, IL-1β/-16, iNOS,
ICAM-1) and colon weight/length ratio. Additionally,
CPn restituted the intestinal barrier integrity as observed
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from increased expression levels of MUC3 and tight
junction proteins (ZO-1, OCLN) [128]. In a similar dis-
ease model of mice, dietary CPn (DE68.01 ± 0.43%,
DE41.61 ± 0.12%, and DE38.09 ± 0.78%) reduced the

expression of pro-inflammatory proteins (IL-6/-17,
MPO), intestinal permeability (FD4/LPS flux), inflamma-
tory cell infiltration, colon weight/length ratio, epithelial
and mucosal damage. Additionally, CPn increased the

Table 3 Effects of citrus pectin in the intestinal cell and animal models

Model of
study

Stress by CPn(s) assessed Immune response and morphological changes Reference

In vitro

Human
T84 cells

Phorbol esters CPn (DM30%,
DM56%, DM74%)

↑TEER [114]

Human
Caco-2
cells

Salmonella typhimurium (pathogen), Listeria
monocytogenes (pathogen), Lacticaseibacillus
casei (probiotic), Bifidobacterium lactis
(probiotic)

CPn or citrus
residues after juice/
pectin extraction

↓(IL-8, pathogen adhesion and invasion); ↑probiotic
adhesion

[33]

Mouse
CMT93
cells

Citrobacter rodentium CPn (DM32%,
DM59%, DM64%)

↓(Pathogen adhesion, lucifer yellow flux); ↑TEER [113]

Porcine
IPEC-J2
cells

Non-stimulated Fermented citrus
pulp

↓(TLR4, CLDN-1); ↑NOD1 [124]

In vivo

Rats Non-stimulated CPn ↑(Ki67+ cells, intestinal length and weight, cecum
SCFAs, mucosal wet weight, protein and DNA
content)

[125]

Rats Methotrexate-colitis CPn ↓(Organ water content, MPO, intestinal permeability,
bacterial translocation); ↑(mucosal protein, DNA and
RNA content)

[126]

Mice Acetic acid-colitis CPn ↓(ROS, MPO, granulocyte adhesion, colon damage) [127]

Mice Doxorubicin-ileitis CPn (DM7%) ↓(TNF-α, MCP-1, CXCL1, IL-6, inflammatory cell infil-
tration, crypt cell apoptosis); =(IL-10, cecum SCFAs)

[32]

Mice DSS-colitis CPn or citrus
residues after juice
extraction

↓(TNF-α, IL-1β, IL-16, iNOS, ICAM-1, colon weight/
length ratio); ↑(MUC3, ZO-1, OCLN)

[128]

Mice DSS-colitis CPn (DE68.01 ±
0.43%, DE41.61 ±
0.12%, DE38.09 ±
0.78%)

↓(IL-6, IL-17, MPO, FD4/LPS flux, epithelial erosion,
ulceration, inflammatory cell infiltration, colon
weight/length ratio); ↑(ZO-1, goblet cell abundance,
crypt and villus structure); =OCLN

[31]

Mice DSS-colitis CPn, CPn methanol
extracts or
methanol residues

↓(TNF-α, IL-1β, IL-6, CXCL2, IL-17a, ulceration, erosion,
inflammatory cell infiltration, colon shortening);
↑(ZO-2, OCLN, CLDN-3/-7, JAM-A)

[129]

Mice DSS-colitis Methanol extracted
CPn

↓(IL-6, MCP-1, CXCL2, epithelial damage,
inflammatory cell infiltration, colon shortening);
↑(ZO-1/-2, CLDN-3/-7, crypt structure, goblet cell
abundance); =IL-17a

[130]

Mice DSS-colitis CPn ↓(TNF-α, IL-12, colon shortening) [131]

Cats Indomethacin-small intestinal lesions CPn ↓Mucosal ulceration and lesions [132]

Chicken Eimeria maxima coccidiosis CPn ↓(IL-12β, serosa thickness, schizont count in
enterocytes); ↑(IFN-γ, IL-1β, goblet cell abundance,
V/C ratio, cecum weight, cecum SCFAs); =(MUC2, IL-
8)

[133]

Weaned
piglets

Non-stimulated Citrus pulp =(IL-6, IL-1β, TNF-α, IFN-γ, IL-10, SOCS3) [134]

The arrow indicates an increase (↑) or decrease (↓) in the level or activity of the different parameters analysed, “=” symbol designates unchanged parameters.
CLDN Claudin, CPn Citrus pectin, CXCL Chemokine C-X-C motif ligand, DE Degree of esterification, DM Degrees of methyl esterification, DSS Dextran sulphate
sodium, FD4 Fluorescein isothiocyanate-labelled dextran 4 kDa, ICAM-1 Intercellular adhesion molecule-1, IFNγ Interferon γ, IL Interleukin, iNOS Inducible nitric
oxide synthase, JAM Junctional adhesion molecule, Ki67 Cell proliferation marker, LPS Lipopolysaccharides, MCP-1 Monocyte chemotactic protein-1, MPO
Myeloperoxidase, MUC Mucin, NF-κB Nuclear factor-κB, OCLN Occludin, ROS Reactive oxygen species, SCFAs Short-chain fatty acids, SOCS3 Suppressor of cytokine
signalling-3, TEER Transepithelial electrical resistance, TLR Toll-like receptor, TNBS 2,4,6-Trinitrobenzene sulfonic acid, TNF Tumour necrosis factor, ZO
Zonula occludens
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goblet cell abundance, ZO-1 expression, and V/C archi-
tecture [31].
In another study, administration of CPn, its methanol

extracts, or methanol residues in the DSS-colitis mice,
attenuated the mucosal damage, inflammatory cell infil-
tration, colon shortening, and gene or protein expression
of pro-inflammation cytokines and chemokines (TNF-α,
IL-1β, IL-6, IL-17a, IL-12, MCP-1 or CXCL2) [129–131].
As observed earlier, CPn supported the recovery of bar-
rier integrity by improving the goblet cell abundance
[31, 129] and the expression of different tight junction
proteins (ZO-1/-2, OCLN, CLDN-3/-7, or JAM-A) [129,
130]. In cats, CPn ameliorated the small intestinal ulcer-
ation and lesions commonly caused by the side effects of
NSAIDs as the indomethacin [132]. In chicken coccidi-
osis, CPn administration decreased the serosa thickness,
number of schizonts in the ileal enterocytes, and the
gene expression of pro-inflammatory cytokine IL-12β. In
addition to improvement in goblet cell abundance, V/C
ratio, cecum weight, levels of SCFAs, and the gene ex-
pression of pro-inflammatory cytokines (INFγ, IL-1β)
were also increased. Although CPn displayed beneficial
effects to a certain extent, on the contrary, it also acti-
vated inflammatory response and decreased the growth
performance of un-infected birds [133]. Following this,
supplementation of citrus pulp in weaned piglets did not
alter the intestinal morphology or inflammatory status
[134]. In some of the in vivo trials, CPn administration
significantly enhanced the level of the cecum or fecal
SCFAs, which could have contributed to the changes ob-
served in intestinal morphology and its immune status
[129, 130, 133].

Milk exosomes
Structure and molecular mechanism
Exosomes are membrane-bound, extracellular vesicles of
30–150 nm size and 1.13–1.19 g/mL density. It carries
cargos of nucleic acids, proteins, lipids, and other signal-
ing molecules for specific cellular functions [135]. Exo-
somes are either directly released from the cell
membranes or produced within the cells and then exter-
nally released [136]. Most cells secrete exosomes into
various body fluids including the blood and milk [136,
137]. Recent bioinformatical analysis has identified the
presence of numerous microRNAs (miRNAs) and pep-
tides in the milk-derived exosomes (MDEs) relevant for
developmental and immune-related activities of the in-
testinal barrier [38, 39, 138]. Generally, miRNAs are
single-stranded, non-coding RNA molecules of 18–25
nucleotides long. The primary miRNA is synthesized in
the nucleus and then transported to the cytoplasm,
where it is processed into mature miRNA. In association
with the RNA-inducing silencing complex, the mature
miRNA binds to a complementary mRNA and inhibit

protein synthesis [139]. Through dietary MDEs, the mol-
ecules that are involved in initiation, propagation, and
resolution phases of intestinal inflammation can be con-
trolled [Fig.5].

Impact on intestinal barrier under normal and stress
conditions

In vitro studies Dietary MDEs survives the intestinal di-
gestion and are subsequently taken up by the IECs or
transported across [140–142]. The miRNA sequencing
of MDEs has revealed that even harsh gastric/pancreatic
digestion had a limited impact on its miRNA profiles
[140, 141]. Further, MDE uptake is driven by receptor-
mediated endocytosis in various cell types including the
small intestinal IECs [143]. This shows how the dietary
MDEs stably cross the intestinal barrier and enter sys-
temic circulation in order to establish specific ‘cell-to-
cell’ communication. Moreover, maternal MDEs carry
miRNAs, proteins, and other growth-promoting factors
necessary for the maturation of infant gut immunity
[144]. Several studies have demonstrated the ability of
miRNAs to control the developmental and immune-
related activities of the intestinal barrier (Table 4).
Accordingly, supplementation of porcine MDEs im-

proved the viability and proliferation of IPEC-J2 cells by
increasing the gene expression of homeobox transcrip-
tion factor-2 (CDX2), insulin-like growth factor-1 recep-
tor (IGF-1R), and proliferating cell nuclear antigen
(PCNA). Besides, the miRNAs targeting the p53 cell
death pathway were transferred from MDEs to the
IPEC-J2 cells. This subsequently downregulated the
genes involved in p53 pathway such as the p53, cell-
surface death receptor (FAS) and serine protease inhibi-
tor clade E (SERPINE) [138]. Likewise, rat MDEs stimu-
lated the viability, proliferation, and stem cell activity of
rat IEC-18 cells by activating the gene expression of
PCNA and leucine-rich repeat-containing G-protein
coupled receptor-5 (LGR5) [145].
Interestingly, the human MDEs selectively induced

proliferation and mesenchymal-like morphology in the
human normal CCD841 cells over cancer LS123 cells
by modulating the expression of collagen type-I pro-
tein and twist1 gene. Furthermore, tumorigenesis was
suppressed only in the normal cells by downregulat-
ing the protein expression of phosphatase and tensin
homolog [146]. In another human cancer cell model
as LS174T, application of bovine MDEs enhanced
mucin production by stimulating the expression of
genes specific for goblet cell activity such as the
MUC2, trefoil factor family-3 (TFF3), and glucose-
regulated protein-94 (GRP94) [147]. Following, the
MDEs were shown to secure the intestinal barrier
from different pathogenic and non-pathogenic stress
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factors. Accordingly, the human pre-term MDEs
highly stimulated the proliferation, migration, and
healing of mechanically injured human FHC cells
compared to the term-MDEs [38]. In another study,
pre-treatment of bovine MDEs protected the IEC-6
cells from the oxidative damage of H2O2 by enhan-
cing cell proliferation and level of antioxidant en-
zymes (superperoxide dismutase, glutathione
peroxidase). Additionally, the bovine MDEs inhibited
the mediators of oxidative stress (ROS, malondialde-
hyde), LDH release, and the gene expression of NRF2
and HO-1 by altering the miRNA profiles of IEC-6
cells [153].
Further, co-administration of porcine MDEs or MDE-

miRNAs with LPS decreased the impact of LPS-induced
inflammation and apoptosis of IPEC-J2 cells.

Particularly, damage on cell viability, genes or proteins
activated in TLR4/NF-κB pathway (TLR4, MyD88, p-
IκBα, p-p65-NF-κB, p-NF-κB, NF-κB), p53 apoptotic sig-
naling (Tp53, FAS, Caspase-3) and secretion of pro-
inflammatory cytokines (IL-1β/-6, TNF-α) were signifi-
cantly attenuated [148, 149]. Similarly, in another study
by the same group, co-administration of porcine MDEs
with DON lowered the impact of DON-induced toxic
stress in the IPEC-J2 cells. Specifically, DON-induced
damage on cell viability, genes or proteins corresponding
to proliferation (β-catenin, cyclin D1 [CCND1], protein
kinase B [Akt]) and tight junction proteins (ZO-1, OCLN,
CLDN1) were significantly recovered by the treatment of
porcine MDEs. Additionally, DON-activated genes or
proteins that involved in apoptosis (Tp53, p21, FAS,
SERPINE1, caspase-3/-9) were suppressed by the porcine

Fig. 5 Model summarizing the immunomodulatory mechanisms of milk-derived exosomes in the intestinal epithelium. Host cells when sensed
pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) via pattern-recognizing receptors (PRRs),
activate the nuclear factor-κB (NF-κB)-mediated pro-inflammatory response, oxidative stress, and cell-death pathway (Black lines). Dietary milk-
derived exosomes (MDEs) deliver their miRNA/peptide cargo to the intestinal epithelial cells via receptor-mediated endocytosis. Subsequently, the
MDE-miRNAs bind to the complementary mRNAs in the cells and inhibit the synthesis of proteins specific for NF-κB signaling (Red lines).
Abbreviations: ROS, Reactive oxygen species; miRNA, microRNA; mRNA, messenger RNA. For references, see text. Figure created
using BioRender.com
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Table 4 Effects of milk-derived exosomes in the intestinal cell and animal models

Model of study Stress by MDEs/MDE-miRNAs
from

Immune response and morphological changes Reference

In vitro

Porcine IPEC-J2
cells

Non-stimulated Porcine milk ↑(Cell proliferation, CDX2, IGF-1R, PCNA, miRNAs targeting FAS,
SERPINE and p53 pathways); ↓(FAS, SERPINE, p53)

[138]

Rat IEC-18 cells Non-stimulated Rat milk ↑(Cell viability, proliferation, PCNA, LGR5) [145]

Human CCD841
cells or human
LS123 cells

Non-stimulated Human milk ↑(Cell proliferation, collagen type-I); ↓(twist1, PTEN) in CCD841 cells;
= LS123 cells

[146]

Human LS174T
cells

Non-stimulated Bovine milk ↑(Mucin secretion, TFF3, MUC2, GRP94) [147]

Human FHC cells Mechanical wound Human term or
preterm milk

↑(Cell proliferation, migration and wound healing) [38]

Porcine IPEC-J2
cells

LPS Porcine milk ↑(Cell viability, IκBα); ↓(TLR4, MyD88, p-IκBα, p-NF-κB-p65, p-NF-κB,
NF-κB nuclear translocation, Tp53, FAS, Caspase-3, IL-1β, IL-6, TNF-α)

[148]

Porcine IPEC-J2
cells

LPS Porcine milk ↑(Cell viability, IκBα); ↓(TLR4, p-IκBα, p-NF-κB-p65, p-NF-κB, NF-κB,
Tp53, p53, FAS, Caspase-3, IL-1β, IL-6, TNF-α)

[149]

Porcine IPEC-J2
cells

DON Porcine milk ↑(Cell viability, proliferation, β-catenin, CCND1, Akt, ZO-1, OCLN,
CLDN1, PCNA, miRNAs targeting p53 pathway); ↓(Tp53, FAS,
SERPINE1, p21)

[150]

Rat IEC-6 cells Hypoxia Yak milk ↑(Cell viability, proliferation, PHD-1); ↓(HIF-1α, VEGF, p53) [151]

Rat IEC-6 cells Hypoxia Yak milk ↑(Cell viability, Ki67+ cells, PHD-1); ↓(HIF-α, VEGFA, p53, Bax,
caspase-3/-9)

[39]

Rat IEC-6 cells or
human FHS-74
cells

Hypoxia/
reoxygenation

Human milk ↑(Living cell count, proliferation); ↓apoptosis [152]

Rat IEC-6 cells H2O2 Bovine milk ↑(Cell viability, superperoxide dismutase, glutathione peroxidase);
↓(ROS, LDH, malondialdehyde, NRF2, HO-1)

[153]

Neonate mice
intestinal
organoids

LPS Human colostrum,
transitional or
matured milk

↓(Structural damage, TNF-α, TLR4, LGR5, Ki67) [154]

Neonate mice
intestinal
organoids

Hypoxia and LPS Human raw or
pasteurized milk

↓(Structural damage, IL-6, MPO); ↑(MUC2, goblet cell abundance) [155]

In vivo

Mice Non-stimulated Porcine milk ↑(Small intestinal V/C ratio, CDX2, PCNA, IGF-1R); ↓p53 [138]

Mice Non-stimulated Bovine milk ↑(MUC2, RegIIIγ, MyD88, GATA4, IgA, secretory IgA, enterocyte
abundance, V/C, cecum surface area)

[156]

Mice LPS Porcine milk ↓(IL-1β, IL-6, TNF-α); ↑(jejunum morphology, villi structure, V/C
ratio)

[148]

Mice DON-colitis Porcine milk ↓(p53, p21, caspase-3/-9, villi damage); ↑(jejunum villus height, crypt
depth, V/C ratio, intestinal length, β-catenin, CCND1, phospho-Akt,
ZO-1, OCLN, CLDN1, miRNAs targeting p53 pathway)

[150]

Mice DSS-colitis Human milk ↑(TGF-β1, miRNAs targeting DNMT1/DNMT3); ↓(colon shortening,
inflammatory cell infiltration, tissue damage, lesions, DNMT1/
DNMT3, IL-6, TNF-α)

[157]

Transgenic mice Tamoxifen-ulcerative
colitis

Bovine milk ↑(Colon length and weight); ↓mucosal injury [158]

Neonate rats Formula feeding and
hypoxia-induced NEC

Human preterm milk ↑(Villus integrity, enterocyte proliferation); ↑(peptides promoting
epithelial proliferation, migration, regeneration and
immunomodulation)

[38]

Neonate mice Formula feeding, LPS
and hypoxia-induced
NEC

Bovine milk ↓(Intestinal damage, MPO); ↑(MUC2+/GRP94+ goblet cell
abundance)

[147]

Neonate mice Formula feeding, LPS
and hypoxia-induced

Human milk ↓(Intestinal damage, severity and incidence of disease) [152]
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MDEs. Besides, the miRNAs targeting the p53 pathway
were highly expressed in the IPEC-J2 cells post-
incubation with porcine MDEs [150]. In the intestinal
organoids of neonatal mice, co-administration of human
MDEs (from colostrum, transitional or mature milk)
with LPS, markedly reduced the LPS-induced pro-
inflammatory gene expression (TLR4, TNF-α) and mor-
phological damage. Besides, the human MDEs stimu-
lated the expression of markers specific for epithelial
proliferation (Ki67+ cells) and regeneration (LGR5 gene)
in the organoids. Amongst the three MDE-treatment
groups, colostrum-MDEs exhibited enhanced cytopro-
tective effects [154].
Several recent studies assessed the capability of MDEs

in controlling the hypoxic stress in intestinal barrier. Ac-
cordingly, pre-treatment of cow MDEs, yak MDEs or
yak MDE-miRNAs enhanced the survival and prolifera-
tion (Ki67+ cells) of IEC-6 cells under hypoxic stress. Es-
pecially, the yak MDEs or MDE-miRNAs enhanced
hypoxia resistance by decreasing the protein expression
of hypoxia-inducible factor-1α (HIF-1α), vascular endo-
thelial growth factor-A (VEGFA), and different apoptotic
markers (p53, B-cell lymphoma 2-associated X protein
[Bax], Caspase-3/-9), while upregulated
prolylhydroxylases-1 (PHD-1) [39, 151]. Additionally,
the miRNA profiling of MDEs has disclosed the pres-
ence of miRNAs relevant for hypoxia protection and in-
testinal barrier development. The microscopic
observations also revealed that yak MDEs were highly
taken up by the cells during normoxic conditions over
the cow MDEs [39, 151]. Likewise, in another study,
pre-treatment of human MDEs protected the human
FHS-74 and rat IEC-6 cells from alternating hypoxia/re-
oxygenation injury by inhibiting apoptosis and enhan-
cing the cell proliferation [152]. Similarly, both raw and
pasteurized human MDEs reduced the morphologic
damage, MPO activity, and the gene expression of pro-
inflammatory IL-6, while enhanced the goblet cell

abundance and MUC2 expression in the hypoxia and
LPS-injured neonatal mice intestinal organoids [155].

In vivo studies Previously, administration of porcine
MDEs in mice significantly improved the small intestinal
morphology (villus height, crypt depth, V/C ratio) and
expression of genes and proteins specific for mucosal
proliferation (CDX2, IGF-1R, PCNA), while supressed
the p53 [138] (Table 4). Similarly, in another study, bo-
vine MDEs improved the enterocyte abundance and in-
testinal architecture (villus height, crypt depth, cecum
surface area) in mice [156]. In addition, the expression
of genes or proteins relevant for mucosal integrity and
innate immunity such as the MUC2, MyD88, regenerat-
ing islet-derived protein 3 gamma (RegIIIγ), GATA bind-
ing protein-4 (GATA4), immunoglobulin A (IgA), and
secretory IgA were significantly increased [156]. Further,
as observed in cell studies, co-administration of porcine
MDEs with LPS ameliorated the severity of LPS-induced
inflammation in mice. Particularly, the porcine MDEs
suppressing the protein expression of pro-inflammatory
cytokines (IL-1β/-6, TNF-α) and improved the small in-
testinal morphology (villus height, crypt depth, V/C ra-
tio) [148]. Similarly, co-administration of porcine MDEs
with DON in mice, reduced the DON-induced damage
on intestinal morphology (villus height, crypt depth, V/C
ratio), expression of genes and proteins corresponding
to jejunal proliferation (β-catenin, CCND1, phospho-
Akt), and tight junction proteins (ZO-1, OCLN, CLDN1).
The DON-activated genes and proteins that involved in
apoptosis (p53, p21, FAS, SERPINE1, caspase-3/-9) were
also significantly inhibited [150]. Further, the bovine and
human MDEs attenuated the mucosal lesions, lympho-
cyte infiltration, colon shortening, and gene expression
of pro-inflammatory cytokines (IL-6, TNF-α) in the
DSS-colitis mice. Additionally, the protein level of
TGF-β1 and specific miRNAs were upregulated in the
mice colon, which subsequently downregulated its

Table 4 Effects of milk-derived exosomes in the intestinal cell and animal models (Continued)

Model of study Stress by MDEs/MDE-miRNAs
from

Immune response and morphological changes Reference

NEC

Neonate mice Formula feeding, LPS
and hypoxia-induced
NEC

Human raw or
pasteurized milk

↑(Goblet/MUC2+ cell abundance);↓(MPO, IL-6, mucosal injury) [155]

The arrow indicates an increase (↑) or decrease (↓) in the level or activity of the different parameters analysed, “=” symbol designates unchanged parameters. Akt
Protein kinase B, Bax B-cell lymphoma 2-associated X protein, CCND1 Cyclin D1, CDX2 Homeobox transcription factor-2, CLDN Claudin, DNMT DNA
methyltransferase, DON Deoxynivalenol, DSS Dextran sulphate sodium, FAS Cell surface death receptor, GATA4 GATA binding protein 4, GRP94 Glucose-regulated
protein-94, HIF-1α Hypoxia-inducible factor-1α, HO-1 Heme oxygenase-1, H2O2 Hydrogen peroxide, Ig Immunoglobulin, IGF-1R Insulin-like growth factor 1 receptor,
IL Interleukin, Ki67 Cell proliferation marker, LDH Lactate dehydrogenase, LGR5 Leucine-rich repeat-containing G-protein coupled receptor 5, LPS
Lipopolysaccharides, miRNA microRNA, MPO Myeloperoxidase, MUC2 Mucin 2, MyD88 Myeloid differentiation primary response 88, NF-κB Nuclear factor-κB, NEC
Necrotizing enterocolitis, NRF Nuclear factor erythroid 2-related factor, OCLN Occludin, PCNA Proliferating cell nuclear antigen, PHD-1 Prolyl hydroxylases-1, p-IκBα
phospho-Nuclear factor-κB inhibitor α, p-NF-κB phospho-Nuclear factor-κB, p-NF-κB-p65 phospho-Nuclear factor-κB p65 subunit, PTEN Phosphatase and tensin
homolog, Ki67 Cell proliferation marker, RegIIIγ Regenerating islet-derived protein 3 gamma, ROS Reactive oxygen species, SERPINE Serine protease inhibitor clade
E, TGF Transforming growth factor, TFF3 Trefoil factor family-3, TLR Toll-like receptor, TNF Tumour necrosis factor, Tp53 or p53 Tumour protein 53, V/C Villus height/
crypt depth, VEGFA Vascular endothelial growth factor-A, ZO Zonula occludens
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target genes as the DNA methyltransferase-1/-3
(DNMT1/DNMT3) [157]. Similarly, the bovine MDEs
reduced the mucosal inflammation and colon weight/
length in the tamoxifen-induced ulcerative colitis in
transgenic mice [158].
Moreover, MDEs are able to attenuate the severity of

NEC induced by a combination of hypoxia, formula
feeding, or LPS challenge in neonatal murine. Accord-
ingly, in NEC-rat pups, supplementation of human pre-
term MDEs accumulated in the small intestine, which
subsequently increased the ileal villus integrity and en-
terocyte proliferation. For the first time, peptidomic pro-
filing of MDEs revealed the presence of numerous
peptides involved in epithelial proliferation, migration,
regeneration, and immunomodulation [38]. Similarly,
bovine MDEs improved the distal ileal morphology, gob-
let cell abundance (MUC2+/GRP94+ cells) and decreased
the MPO expression in the NEC-neonatal mice [147].
Likewise, the administration of human MDEs in the
NEC-neonatal mice suppressed the intestinal damage,
severity, and incidence of disease [152]. In another study,
administration of raw or pasteurized human MDEs in
the NEC-neonatal mice, significantly enhanced the gob-
let cell abundance (MUC2+ cells), while attenuated the
distal ileal injury, MPO level and, the gene expression of
pro-inflammatory IL-6 [155]. A schematic representation
summarizing the anti-inflammatory and antioxidative
mechanisms of MDEs through NF-κB inhibition in IEL
is reported in Fig. 5.

Conclusion, limitations, and future perspectives
Based on European Food Safety Authority, the main tar-
get of an immunomodulatory feed additive is to stop the
local inflammation and prevent further damage to the
immune system. According to existing data, it can be
concluded that the dietary omega-3 polyunsaturated
fatty acids, citrus pectin, and milk-derived exosomes are
able to terminate inflammation at the level of the intes-
tinal barrier. The molecular mechanisms of these nutri-
ents in the intestinal barrier are mainly associated with
improving the expression of tight junction proteins, epi-
thelial proliferation, enrichment of mucus layer, immu-
nomodulation and prevention of inflammatory cell
infiltration. Further, the nutrients support the mainten-
ance of intestinal equilibrium even under stress condi-
tions by enhancing epithelial proliferation and
regeneration. Moreover, these nutrients have demon-
strated considerable bioaccessibility and bioavailability
across the intestinal epithelium, which is a major chal-
lenging factor in feed formulations. Although omega-3
polyunsaturated fatty acids are a well-known anti-
inflammatory nutrient over decades, till-date its applica-
tion in controlling IBD is well established in humans,
unlike animals. The lack of specific molecular studies at

the intestinal level of livestock and poultry is a major
setback for achieving desired health outcomes in farm
animals. On the other hand, existing data on citrus pec-
tin and milk-derived exosomes are insufficient for har-
nessing their application as an immunomodulatory feed
additive. However, in the future, the novel property of
citrus pectin to form gel matrix with mucin and select-
ively support the intestinal adhesion of probiotics can be
utilized to reconstitute the mucosal epithelium that is
damaged during infections, antibiotic therapy, or IBD.
Additionally, the barrier penetrating property of low mo-
lecular weight citrus pectin can be used to target the
pro-inflammatory mediators such as Galectin-3 at the
local and systemic level. Intriguingly, both omega-3
polyunsaturated fatty acids and miRNA/peptide cargoes
of milk-derived exosomes prevent the incidence of nec-
rotizing enterocolitis by suppressing hypoxic stress. They
can be excellent nutritional supplements especially in
newborn mammals to preventing undesired inflamma-
tory stress, hypoxia, and mortality during the pre- and
post-weaning periods. In summary, all these nutrients
pose a promising opportunity for controlling chronic in-
flammatory diseases and promote gut health in farm ani-
mals. However, it is noteworthy to mention that the
molecular mechanism of these natural bioactive com-
pounds can be diverse and poor understanding can limit
its practical application. Therefore, further studies, espe-
cially using high-throughput omics technologies are ne-
cessary in order to enumerate their precise molecular
mechanisms for efficient utilization in animal diets.
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