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Heat shock protein family D member 1 in
boar spermatozoa is strongly related to the
litter size of inseminated sows
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Abstract

Background: Sperm quality evaluation is the logical first step in increasing field fertility. Spermatozoa contain
cytoplasmic organelles and biomolecules known as sperm-intrinsic factors, which play key roles in sperm
maturation, sperm-oocyte fusion, and embryo development. In particular, sperm membrane proteins [e.g., arginine
vasopressin receptor 2, beta-actin, prohibitin, and heat shock protein family D member 1 (HSPD1)] and RNA could
be used as functional indicators of male fertility. We sought to clarify the effects of differential mRNA expression of
selected genes on several fertilisation parameters, including sperm motility, motion kinematics, capacitation, and
litter size, in a porcine model.

Results: Our results demonstrated that HSPD1 expression was significantly correlated with male fertility, as
measured by the litter size of inseminated sows. The expression of HSPD1 mRNA was linked to sperm motility and
other motion kinematic characteristics. Furthermore, HSPD1 had a 66.7% overall accuracy in detecting male fertility,
and the high-litter size group which was selected with the HSPD1 marker had a 1.34 greater litter size than the low-
litter size group.

Conclusions: Our findings indicate that HSPD1 might be a helpful biomarker for superior boar selection for artificial
insemination, which could boost field fertility.
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Background
Artificial insemination (AI) has been applied globally to
breed various types of livestock. More than 80% of cattle
and swine production worldwide depends on AI [1].
Therefore, AI failure can cause considerable economic
damage to the animal industry. Moreover, approximately
50% of all infertility cases in humans and animals are
caused by male factors [1], and only 50% of insemina-
tions result in successful full-term pregnancies [2]. Thus,
male fertility is a critical factor to consider when asses-
sing AI failure in the livestock industry. To increase the

success rate of AI, new technologies must be developed
to optimise sperm quality.
Spermatozoa carry not only the paternal genome, but

also several intrinsic factors that modulate early develop-
ment after fertilisation, including cytoplasmic organelles
and biomolecules, such as proteins and RNAs [3–5].
These sperm-intrinsic factors (SIFs) are involved in crit-
ical steps of development, such as sperm maturation,
sperm-oocyte fusion, and embryo development [4, 6].
Proteins and RNAs in spermatozoa directly affect pre-
and post-fertilisation processes. For instance, proteins
secreted from the intraluminal compartment of the epi-
didymis interact with sperm surface proteins and induce
sperm maturation [7]. Moreover, several sperm cell
functions and developmental milestones, such as
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capacitation, acrosome reaction, sperm penetration, and
sperm-oocyte fusion, are strictly controlled by sperm
proteins [8]. Several studies have suggested that sperm
proteins and RNAs play important roles in fertilisation
and pre-implantation embryonic development [8–11].
Several transcriptomic studies of spermatozoa have
shown that differential expression of RNA is related to
diverse semen traits [12–16]. Although numerous RNAs
have been associated with male fertility, further research
is needed before changes can be implemented in the
field.
Several compelling studies have successfully demon-

strated the applicability of sperm proteins and RNA as
biomarkers of male fertility [2, 17–20]. The vast majority
of sperm membrane proteins have been identified as
biomarkers of male fertility outcomes in these studies.
Sperm membrane proteins play crucial roles in develop-
mental biology, including protein receptor signalling, fla-
gella movement control, ion homeostasis regulation, and
sperm-zona pellucida interactions [20]. In particular, dif-
ferential expression of arginine vasopressin receptor 2
(AVPR2), beta-actin (ACTB), prohibitin (PHB), and heat
shock protein family D member 1 (HSPD1) proteins, all
of which are classified by the Gene Ontology database as
integral membrane components, has been linked to male
fertility outcomes [17]. AVPR2, ACTB, and PHB are
closely related to sperm motility and affect male fertility.
Arginine vasopressin affects the male reproductive tract,
sperm count, and motility in mice [21]. AVPR2 is the G-
protein-coupled receptor of arginine vasopressin, and
AVPR2 mRNA is found in the vas deferens epithelium
of humans and pigs [22] and the tail mid-piece and the
acrosome region of mouse spermatozoa [21]. ACTB is a
major component of the cytoskeleton and is involved in
many crucial cellular processes [23]. Differential expres-
sion of the ACTB protein has been linked to male fertil-
ity outcomes in both human and porcine spermatozoa
[17, 24, 25]. PHB is a sperm mitochondrial protein that
modulates mitochondrial structure and functions as a
molecular chaperone [26]. A recent study demonstrated
that PHB interacts with protein kinase B in the mito-
chondrial sheath of murine spermatozoa and controls
motility by activating the phosphoinositide 3-kinase/
serine-threonine kinase (PI3K/AKT) signalling pathway
[27]. HSPD1 is a major target for capacitation-associated
tyrosine phosphorylation, which exposes the zona pellu-
cida receptor to the cell surface of spermatozoa [28, 29].
Although AVPR2, ACTB, PHB, and HSPD1 are known

to be linked to male fertility, the effects of their corre-
sponding mRNA levels on fertility are not well under-
stood. Considering the crucial role of proteins in male
fertility, we hypothesised that the mRNAs encoding
these proteins may play a key role in pre- and post-
fertilisation processes. To test this hypothesis, we used

boar sperm samples. Pigs offer unique advantages over
other well-established species for developmental biology
studies because pigs share major characteristics with
humans, despite being a polytocous (i.e., multiparous)
species. Thus, this polytocous trait provides more com-
prehensive and convincing information on male fertility
after AI in a large number of sows. To investigate the
physiological role of sperm mRNA, we focused on eluci-
dating the direct relationship between the mRNA ex-
pression of selected genes in pre-fertilisation parameters
(sperm motility, motion kinematics, and capacitation
status) and in vivo fertility.

Methods
All procedures involving animals were approved by the
Institutional Animal Care and Use Committee of
Chung-Ang University (Approval No. 2017–00018) and
performed in accordance with the corresponding guide-
lines. All methods were performed according to relevant
guidelines and regulations.

Experimental design
All semen samples were obtained and processed as de-
scribed below. Semen samples (n = 27) were acquired
from a farm (Sunjin Co., Danyang, Korea).
First, to compare the parameters in representative

groups, samples from high- (average litter size 13.15 ±
0.39, n = 3) and low- (average litter size 11.50 ± 0.10,
n = 3) litter sizes were selected based on the average lit-
ter size (total piglets/total breeding). Pre-fertilisation pa-
rameters (motility, motion kinematics, and capacitation
status) and mRNA expressions of AVPR2, ACTB, PHB,
and HSPD1 were assessed in the high- and low-litter size
groups.
Subsequently, randomly selected boar sperm samples

(n = 21) were examined to elucidate the correlation be-
tween mRNA expression levels and pre-fertilisation pa-
rameters (sperm motility, motion kinematics, and
capacitation status) and in vivo fertility.

Boar sperm preparation
Upon collection, the sperm samples were immediately
transferred to a constant temperature container (17 °C)
and stored until the downstream processing steps [30].
All semen samples were centrifuged at 500×g for 20 min
with a discontinuous 70% (v/v) and 35% (v/v) Percoll
gradient (Sigma-Aldrich, St Louis, MO, USA) to remove
seminal plasma as well as immotile and dead spermato-
zoa [31]. The isolated live spermatozoa were then incu-
bated at 37 °C in 5% CO2 modified tissue culture
medium 199 (mTCM 199; 0.91 mmol/L sodium pyru-
vate, 3.05 mmol/L D-glucose, 2.92 mmol/L calcium lac-
tate, and 2.2 g/L sodium bicarbonate; Sigma-Aldrich) for
30 min [30, 32].
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Computer-assisted sperm analysis (CASA)
Boar sperm motility (%) and motion kinematics were ana-
lysed using a CASA system (SAIS-PLUS VERSION 10.1;
Medical Supply, Seoul, Korea) [33]. After incubation,
10 μL of the sperm sample was placed in a Makler count-
ing chamber (Sefi Medical Instruments, Haifa, Israel),
which was then placed on a preheated heat block at 37 °C
[32, 34, 35]. Sperm motility, hyperactivated motility
(HYP), curvilinear velocity (VCL), straight-line velocity
(VSL), average path velocity (VAP), mean amplitude of
lateral head displacement (ALH), beat cross frequency
(BCF), linearity (LIN), and wobble (WOB) were deter-
mined [32]. Each sample was observed using phase-
contrast microscopy with a 10× objective lens [36].

Combined Hoechst 33258/chlortetracycline fluorescence
assessment of capacitation status
The capacitation status of boar spermatozoa was exam-
ined with a dual staining method using a combined
Hoechst 33258/chlortetracycline fluorescence staining
process [30, 37]. The samples were first incubated in
mTCM 199 and centrifuged at 400×g for 10 min at room
temperature. The supernatant was discarded, and then
135 μL of phosphate-buffered saline (PBS) and 15 μL of
H33258 solution were added. The samples were gently
mixed and incubated for 10 min at room temperature.
Excess dye was inactivated with 250 μL of 2% (w/v) poly-
vinylpyrrolidone (Sigma-Aldrich) in PBS. After centrifu-
gation at 400×g for 10 min, the supernatant was
discarded, and then the pellet was resuspended in
600 μL of PBS and 600 μL of chlortetracycline (CTC)
fluorescence solution (750 mmol/L CTC in 5 μL buffer;
20 mmol/L Tris, 130 mmol/L sodium chloride (NaCl),
and 5mmol/L cysteine, pH 7.4; Sigma-Aldrich) [38]. The
stained samples were counted using a Microphot-FXA
microscope (Nikon, Tokyo, Japan) under epifluorescence
illumination using ultraviolet BP 340–380/LP 425 and
BP 450–490/LP 515 excitation/emission filters for
H33258 and CTC, respectively. Capacitation status was
quantified on approximately 400 spermatozoa per slide
for each sample. Capacitation status was further classi-
fied into four categories: live non-capacitated (F; green
fluorescence distributed evenly throughout the sperm
head), live capacitated (B; green fluorescence over the
acrosome region and a dark post-acrosome region),
acrosome-reacted (AR; showing no fluorescence over the
head), and dead (D; nuclei with blue fluorescence within
the sperm head) [37].

RNA extraction, cDNA synthesis, and reverse
transcription-quantitative polymerase chain reaction (RT-
qPCR)
RNA extraction, cDNA synthesis, and RT-qPCR were
conducted as described previously [39]. Briefly, all

samples were washed with PBS, centrifuged at 10,000×g
for 10 min, and stored at − 80 °C prior to RNA extrac-
tion. Each sperm sample was counted, and then sperm
concentrations were adjusted to 50 × 106 cells/mL with
fresh PBS. The samples were then centrifuged at
13,000×g for 10 min at 4 °C, and the supernatant was
then removed. Sperm pellets were lysed using a lysis
buffer (PureLink™ RNA Mini Kit; Invitrogen, Carlsbad,
CA, USA) containing 40 μL/mL β-mercaptoethanol
(Sigma-Aldrich) and then homogenised with 20 G nee-
dles. After mixing the homogenised mixture for 2 min,
500 μL of TRIzol reagent (Invitrogen) was added to the
sperm sample. The sample was then kept at room
temperature for 5 min, and then 200 μL of chloroform
(Sigma-Aldrich) was added, and the samples were mixed
vigorously by hand for 20 s. The samples were incubated
at room temperature for another 5 min and then centri-
fuged at 12,000×g for 25 min at 4 °C. Next, 500 μL of the
upper phase (which contained RNA) was carefully trans-
ferred to a fresh 1- mL tube, and an equal amount of
100% pure ethanol was then added. The mixture was
then mixed by pipetting and processed according to the
manufacturer’s instructions. RNA was eluted in 20 μL
nuclease-free water. RNA concentrations and 260/280
ratios were measured using an Epoch microplate spec-
trophotometer (BioTek, Winooski, VT, USA). cDNA
synthesis was performed using the PrimeScript 1st strand
cDNA Synthesis Kit (Takara Bio, Inc., Shiga, Japan) fol-
lowing the manufacturer’s instructions. RT-qPCR was
performed using the AVPR2-, ACTB-, PHB-, HSPD1-,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH)-,
and peptidylprolyl isomerase A (PPIA)-specific primers,
which were designed for Sus scrofa (Additional file 1:
Table S1). GAPDH and PPIA were used as reference
genes [40], and RT-qPCR data were analysed using the
delta-delta Cq method [41].

ΔCq ¼ Cq a target geneð Þ−Cq a reference geneð Þ

Relative expression of target gene
¼ 2− ΔCq a target sampleð Þ−ΔCq a reference sampleð Þð Þ

The standardised annealing temperature of the de-
signed primers was 60 °C. A standard curve analysis was
performed for each gene to determine the PCR effi-
ciency. Melt curve analysis was conducted to examine
the single amplification, and the size of the PCR prod-
ucts was determined using gel electrophoresis [39].

Western blotting
Protein quantification of HSPD1 was performed by West-
ern blotting [21]. Briefly, 100 × 106 sperm cells were lysed
with a buffer containing 5% 2-mercaptoethanol (Sigma-Al-
drich). The lysate was centrifuged at 10,000×g for 10min at
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room temperature. The supernatant was boiled and stored
for electrophoresis. Proteins were separated using sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE). Separated proteins were transferred onto polyviny-
lidene fluoride membranes (Amersham, Piscataway, NJ,
USA). For protein detection, anti-HSPD1 antibody (Abcam,
Cambridge, UK) was used at a 1:20,000 ratio. Horseradish
peroxidase (HRP)-conjugated rabbit IgG (1:3000; Cell Sig-
naling Technology, Danvers, MA, USA) was used to detect
HSPD1 level. Protein α-tubulin was quantified as an in-
ternal control with anti-α-tubulin mouse antibody (1:
10,000; Abcam) and HRP-conjugated mouse IgG (1:3000;
Cell Signaling Technology). The HRP signal was visualised
on an X-ray film using chemiluminescence. The X-ray film
was scanned using a GS-800-calibrated imaging densitom-
eter (Bio-Rad, Hercules, CA, USA) and analysed using
Quantity One software (Bio-Rad). The ratio of HSPD1/α-
tubulin levels was calculated as the relative expression level
of each sample.

Measurement of male fertility
AI was conducted to measure the male fertility out-
comes. Environmental conditions were maintained at
20 ± 5 °C with ventilation and a 16 h light and 8 h dark
photoperiod. The average number of AI per boar was
22.95 ± 1.24 (18–38). Semen samples from boars were
diluted with Beltsville thawing solution (100 mL per 30
× 106 sperm cells) and stored at 17 °C until required for
insemination.

Quality assessment of genes as the indicators of male
fertility
Sensitivity, specificity, negative predictive value (NPV),
and positive predictive value (PPV) were evaluated using
screening tests [37, 42, 43]. Sensitivity was defined as the
ratio of boars showing true-positive results (i.e., the per-
centage of boars for which we could accurately identify
the litter sizes). In contrast, specificity was defined as the
percentage of boars that exhibited true-negative results.
PPV and NPV were defined as the rate of boars exhibit-
ing positive or negative results, respectively, when the
litter size was ≥ 12.68 or < 12.68 (average litter size of
samples).

Statistical analysis
All data were analysed using SPSS v1.8 (SPSS Inc., Chi-
cago, IL, USA), and all parameters were confirmed for
normality using the Shapiro–Wilk test. All comparisons
between two groups were analysed using Student’s two-
tailed t-tests and the homogeneity of variance test
(Levene’s test). Correlations were identified using Pear-
son’s correlation coefficients for the groups that exhib-
ited a normal distribution (P ≥ 0.05). In groups that
failed the normality tests (P < 0.05), the Spearman

correlation coefficient was used [44]. The prognostic
power of fertility parameters as a function of HSPD1
mRNA expression was evaluated using the receiver oper-
ating characteristic (ROC) curve, and optimal cut-off
values were generated based on the highest sensitivity
and specificity values determined from ROC analysis
[45, 46]. The accuracy of HSPD1 in assessing male fertil-
ity outcomes was determined based on sensitivity and
specificity. All numerical data are reported as the mean ±
standard error of the mean (SEM), and P < 0.05 were
considered statistically significant.

Results
Pre-fertilisation parameters (motility, motion kinematics,
and capacitation status) and gene expression in the high-
and low-litter size boar groups
CASA and H33285/CTC dual staining were conducted
to assess sperm motility, motion kinematics, and capaci-
tation status as the pre-fertilisation potential of boar
spermatozoa. As summarised in Table 1, no significant
differences in sperm motility, motion kinematics, and
capacitation status were observed between the high- and
low-litter size boar groups (P < 0.05). The PCR efficiency
of the designed primers ranged from 89% to 107% (Add-
itional file 1: Fig. S1). PCR amplicon size after reaction
with the designed primers matched the predicted size,
and all melt curve analyses showed a single peak (Add-
itional file 1: Fig. S2). Among the selected genes, AVPR2
and HSPD1 mRNA expression levels were significantly
different between sperm samples (Fig. 1 and Additional
file 1: Fig. S3). Specifically, AVPR2 and HSPD1 mRNA
expression levels were higher in the low-litter size boar
group (P < 0.05; Fig. 1A and D and Additional file 1: Fig.
S3A and D).

Correlation analysis between gene expression and pre-
fertilisation parameters and litter size
The results for the normality test of every parameter
(pre-fertilisation parameters, litter size, and gene expres-
sion) from 21 boars are provided in Additional file 1:
Table S2. A correlation analysis was conducted to iden-
tify the interactions between all parameters in 21 ran-
domly selected boars (Figs. 2 and 4A–D and K). The
mRNA expression of HSPD1 was significantly correlated
with litter size (R = − 0.440; Fig. 2D and Additional file 1:
Table S3). Moreover, HSPD1 expression was positively
correlated with sperm motility (%) and several motion
kinematics, including VCL (μm/s), VAP (μm/s), and
ALH (μm/s) (Fig. 4A–D and Additional file 1: Table S3).

Quality of genes as the indicators of male fertility
HSPD1 was characterised for quality assurance. The sen-
sitivity, specificity, NPV, PPV, and overall litter size pre-
diction accuracy of HSPD1 were 69.2%, 62.5%, 55.6%,
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Table 1 Male fertility parameters of high- and low-litter size spermatozoa

Parameter High-litter size group Low-litter size group

Litter size 13.15 ± 0.39* 11.50 ± 0.10

Motility and motion kinematics MOT, % 84.13 ± 2.21 90.7 ± 0.68

HYP, % 13.28 ± 0.55 15.66 ± 2.15

VCL, μm/s 141.05 ± 10.69 149.68 ± 4.73

VSL, μm/s 66.29 ± 17.43 71.02 ± 1.01

VAP, μm/s 76.33 ± 13.51 83.23 ± 1.39

LIN, % 45.73 ± 8.27 47.49 ± 0.91

BCF, Hz 11.93 ± 0.44 11.49 ± 0.27

WOB, % 53.34 ± 5.18 55.67 ± 0.27

ALH, μm/s 6.37 ± 0.62 6.64 ± 0.13

Capacitation status AR, % 0.22 ± 0.22 1.28 ± 0.51

F, % 91.48 ± 1.02 91.51 ± 3.4

B, % 8.28 ± 1.07 7.2 ± 3.39

MOT motility, HYP hyperactivated motility, VCL curvilinear velocity, VSL straight-line velocity, VAP average path velocity, BCF beat cross frequency, LIN linearity,
WOB wobble, ALH amplitude of lateral head displacement. AR, acrosome-reacted spermatozoa; F, non-capacitated spermatozoa; B, capacitated
spermatozoa; *P < 0.05

Fig. 1 Beta-actin (ACTB), prohibitin (PHB), heat shock protein family D member 1 (HSPD1), and arginine vasopressin receptor 2 (AVPR2) mRNA
expression in high- and low-litter size boar spermatozoa. Differences in marker candidate gene expression in the high-litter size (n = 3) and low-
litter size (n = 3) spermatozoa groups based on the average litter sizes. A AVPR2 mRNA expression in boar spermatozoa with high- and low-litter
sizes. B ACTB mRNA expression in boar spermatozoa with high- and low-litter sizes. C PHB mRNA expression in boar spermatozoa with high- and
low-litter sizes. D HSPD1 mRNA expression in boar spermatozoa with high- and low-litter sizes. Relative expression was normalised to GAPDH
expression. The data are expressed as the mean ± standard error of the mean (SEM); *P < 0.05
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75.0%, and 66.7%, respectively (Fig. 3A). The area under
the curve (AUC) for the HSPD1 ROC curve was 0.69
(Fig. 3A). The samples were divided into high- and low-
HSPD1 expression groups based on the cut-off value of
the ROC curve. In the HSPD1 high-expression group,
the motility (%), VCL (μm/s), VSL (μm/s), VAP (μm/s),
WOB (%), and ALH (μm/s) were significantly different
(P < 0.05) from the those of the HSPD1 low-expression
group (Fig. 4E–J and Additional file 1: Table S4). Ac-
cording to the cut-off value of HSPD1 expression, the
litter size difference between the high- and low-litter size
groups was 1.34 (P < 0.05; Fig. 4L). HSPD1 protein was
highly expressed in the low-litter size group (P < 0.05;
Fig. 3B and C).

Discussion
A substantial proportion of the livestock industry relies
on AI-based breeding, and the fertilisation success rate
can be affected by sperm quality. Therefore, sperm qual-
ity assessment is critical for predicting male fertility. To
accurately investigate male fertility markers to increase
field fertility, a porcine model was selected for the
current study. The importance of the porcine model for
biomedical research has been widely acknowledged [47].
Pigs are also uniquely well-suited for developmental

studies because of the similarity between porcine and
human genomes and the availability of numerically well-
organised AI fertility data [48, 49]. The AI of pigs has
rendered a plethora of valuable information on male fer-
tility. Therefore, the porcine model provides unique ad-
vantages over other species in sperm RNA functional
research on male fertility. The litter size of pigs is the
endpoint of a successful developmental process. The
present study analysed sperm function and in vivo fertil-
ity data to reveal whether the selected genes have prac-
tical importance and attempted to develop precise
markers to increase field fertility.
High throughput “omics” technologies have provided

growing evidence indicating that SIFs, particularly pro-
tein and RNA, are involved in the fertilisation process.
Numerous proteomic technologies have aided in eluci-
dating the vital role of sperm proteins in developmental
biology, and several functional biomarkers have been
validated for use in the biomedical field. However, owing
to the seminal nature of sperm RNA research, the func-
tion of sperm RNA remains a subject of debate. Further-
more, despite the existence of compelling sperm
transcriptome studies [50–54], identifying functional
biomarkers that can be used in the biomedical field re-
mains a challenge. Functional studies of sperm RNA

Fig. 2 Correlation analysis between gene expression and pre-fertilisation parameters. A Linear regression of AVPR2 mRNA expression and litter
size. B Linear regression of ACTB mRNA expression and litter size. C Linear regression of PHB mRNA expression and litter size. D Linear regression
of HSPD1 mRNA expression and litter size. r, Pearson correlation coefficient; *P < 0.05, calculated via the linear regression test
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have mainly focused on small RNAs, including tRNA-
derived small RNAs and small interfering RNAs [55–57].
Nonetheless, the function of sperm mRNA in the fertilisa-
tion process remains controversial. Pang et al. [39] re-
cently optimised an RT-qPCR-based method to
characterise mRNA expression in boar spermatozoa and
identified several functional mRNA biomarkers. Interest-
ingly, mRNA markers exhibited a 60–95% overall accur-
acy in predicting male fertility and significantly increased
the litter size by a maximum of 1.61 piglets per insemin-
ation in field trials [18, 39, 58]. However, examining only a
few functional biomarkers cannot explain the entire fertil-
isation process. Therefore, it would be desirable to use
additional markers to predict male fertility.
Our selected genes were classified using the Gene

Ontology database as integral membrane components.
Among the genes in this category, AVPR2, ACTB, PHB,
and HSPD1 are considered mRNA markers of male fer-
tility in pigs based on relevant literature. To comprehen-
sively understand the effect of the differential mRNA
expression of the selected genes on male fertility, several
parameters (sperm motility, motion kinematics, capacita-
tion, and litter size) were analysed against the mRNA ex-
pression of the aforementioned genes.
Sperm motility and motion kinematics are important

characteristics that can enable sperm to travel through

the female reproductive tract to fertilise the oocyte.
Additionally, sperm cells must undergo essential matur-
ation changes, such as capacitation and acrosome reac-
tion, to fertilise the oocytes [59]. Therefore, we used
sperm motility, motion kinematics, and capacitation
status as the pre-fertilisation features of spermatozoa.
Although numerous studies have addressed the rela-
tionship between conventional semen analyses and
male fertility, the exact relationship between these pa-
rameters remains not fully understood [32, 60, 61]. In
the present study, neither of these pre-fertilisation pa-
rameters exhibited a clear correlation with litter size.
This was consistent with a previous study [44], which
reported that sperm motility, motion kinematics, and
capacitation status are better suited for the acquisition
of preliminary and quantitative sperm fertility data than
of qualitative information.
Transcriptomic biomarkers can explain many bio-

logical processes through high-throughput data and are
more cost-effective than other biomarkers [62]. Al-
though spermatozoa contain a small quantity of RNA,
functional RNAs synthesised during spermatogenesis are
transferred to oocytes during fertilisation [63]. The
present study suggests that HSPD1 mRNA plays a func-
tional role in male fertility and could be a biomarker for
successful fertilisation.

Fig. 3 Quality assessment of HSPD1 mRNA marker and protein expression. A Receiver operating characteristic (ROC) curve of HSPD1 mRNA
expression versus litter size. All the predictive parameters were calculated based on the average litter size (12.68) of samples. AUC, Area under the
curve. Sensitivity (SN) is the percentage of boars showing true-positive results when tested with mRNA expression. Specificity (SP) is the
percentage of boars showing true-negative results. The positive predictive value (PPV) is the percentage of boars that tested positive and also
exhibited a true-positive litter size. The negative predictive value (NPV) is the percentage of boars that tested negative or simultaneously had a
true-negative litter size. OA, Overall accuracy. B Western blotting image of HSPD1 and α-tubulin proteins. C Relative expression of HSPD1 in high-
and low-litter size groups. The data are expressed as the mean ± SEM; *P < 0.05
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HSPD1 plays important roles in various biological func-
tions associated with fertilisation. In mouse spermatozoa,
tyrosine phosphorylation of the HSPD1 protein was ob-
served, and this protein is involved in receptor-mediated in-
teractions with female gametes [29]. In the present study,
the protein level of HSPD1 was checked after the evaluation
of HSPD1 as a sperm mRNA marker. HSPD1 protein was
highly expressed in the high-litter size group. High expres-
sion of HSPD1 might facilitate receptor-mediated interac-
tions between spermatozoa and oocytes and consequently
increase litter size. In the present study, the expression pat-
terns of HSPD1 protein and mRNA were inversely related.
On the genomic scale, protein abundance and mRNA ex-
pression levels show poor correlation [64]. Moreover, in
spermatozoa, neither mRNA functions nor mRNA-protein
interactions are known. Evaluation from an evolutionary
perspective can help us understand how HSPD1 mRNA ex-
pression is associated with fertilisation [65]. During male
gametogenesis in Arabidopsis, short suspensor transcripts
are generated and transferred to female gametes for zygotic
translation. As such, HSPD1 mRNA might have a separate
function in addition to its protein translation, but further
research is required.
HSPD1 plays an important role in embryonic develop-

ment [66]. In the present study, despite the significant
correlation between HSPD1 mRNA expression and

sperm motility, motility parameters were not correlated
to litter size. This result suggests that HSPD1 mRNA af-
fects male fertility, irrespective of sperm function. More-
over, the current study suggests that there are sperm
variables that impact fertilisation ability or embryo de-
velopment that are not detectable using standard sperm
evaluation methods. Our study demonstrates the rela-
tionship between gene expression and the endpoint of
the fertilisation process, suggesting that HSPD1 mRNA
expression might be transferred to the oocytes and
modulate the entire developmental process, including
implantation, foetal development, and successful birth.

Conclusions
Among the several known sperm membrane protein genes,
HSPD1 mRNA levels were found to be crucial indicators of
male fertility. Most importantly, these transcriptomic
markers were more closely related to male fertility parame-
ters, especially the litter size of inseminated sows, with
HSPD1 being particularly correlated with sperm motility
and motion kinematics. Our findings suggest that HSPD1
plays a crucial role in fertilisation and developmental pro-
cesses beyond fertilisation. Therefore, HSPD1 mRNA could
be used in sperm evaluation to predict male fertility before
AI which would lead to further improvements in field
fertility.

Fig. 4 Fertility parameters linked to gene expression dysregulation. A Linear regression of HSPD1 expression and motility (%). B Linear regression of HSPD1
expression and curvilinear velocity (μm/s). C Linear regression of HSPD1 expression and average path velocity (μm/s). D Linear regression of HSPD1 expression
and mean amplitude of lateral head displacement (μm/s). E Difference of motility in high- and low-HSPD1 expression groups. F Difference of curvilinear
velocity (μm/s) in high- and low-HSPD1 expression groups. G Difference of straight-line velocity (μm/s) in high- and low-HSPD1 expression groups. H
Difference of average path velocity (μm/s) in high- and low-HSPD1 expression groups. I Difference of wobble (%) in high- and low-HSPD1 expression groups.
J Difference of mean amplitude of lateral head displacement (μm/s) in high- and low-HSPD1 expression groups. The average values of each fertility
parameter were compared based on the cut-off values of HSPD1 expression (3.1798) from the ROC curves. K Correlation heatmap of all parameters. L
Average litter size of high- and low-litter size groups separated by HSPD1mRNA expression. The data are expressed as the mean± SEM; *P< 0.05
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