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Abstract

Gut homeostasis is of importance to host health and imbalance of the gut usually leads to disorders or diseases for
both human and animal. Postbiotics have been applied in manipulating of gut health, and utilization of postbiotics
threads new lights into the host health. Compared with the application of probiotics, the characteristics such as
stability and safety of postbiotics make it a potential alternative to probiotics. Studies have reported the beneficial
effects of components derived from postbiotics, mainly through the mechanisms including inhibition of pathogens,
strengthen gut barrier, and/or regulation of immunity of the host. In this review, we summarized the characteristics
of postbiotics, main compounds of postbiotics, potential mechanisms in gut health, and their application in animal
production.
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Introduction
Gut homeostasis has been demonstrated to be with im-
portance in maintaining human and animal health [1, 2],
and there is mounting evidence that gut microbiota
plays a vital role in this function [3, 4]. Although it re-
mains challenging, modulation of complex interactions
between gut microbes and host health shows a promise
in growth [5], fertility [6], aging [7], disease [8]. It is well
established that supplementary probiotics can benefit
the host, including specific strains from Lactobacillus
[9], Bifidobacterium [10], and Akkermansia [11]. The
term of probiotics, “Live microorganisms which when
administered in adequate amounts, confer a health bene-
fit on the host,” [12] has been widely accepted. The pro-
biotics improve host health via supporting a healthy
digestive tract and/or a healthy immune system [13],
mainly through producing useful metabolites or enzymes
[14, 15]. Since probiotics were defined as live microor-
ganisms and probiotic products have been widely ap-
plied, large numbers of dead and injured

microorganisms existed [16, 17], still maintaining the in-
fluence on host health while having little attention. The
beneficial effects of components and end-products from
non-viable microorganisms were also observed, such as
bacterial lysates [18], lactic acid [19], short-chain fatty
acids (SCFAs) [20], bioactive peptides [21]. Moreover,
appropriate applications of probiotics remain uncertain
because they are alive when administered. The safety of
probiotics [22, 23] and complex interactions between
gut microbiota [24] have not been totally illustrated yet.
Postbiotics were proposed and bring new inspiration for
the modulation of gut health due to their advantages.
Here, we provided a review of the postbiotics, including
their definition, potential mechanisms, and application
in animal production.

Postbiotics and its advantages in utilization
Several terms of postbiotics have existed and used, for
example, ‘Tyndallized probiotics’ [25], ‘Heat-killed pro-
biotics’ [26], ‘Paraprobiotics’ [27], and ‘Bacterial lysates’
[28]. Although studies and publications of “postbiotics”
are increasing steadily [29], the precise definition of
“postbiotics” remains under discussion [30]. The term of
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“postbiotics” was first coined by Tsilingiri et al., which
are metabolic products derived from probiotics that
exert beneficial effects on the host via direct or indirect
way [31, 32]. In 2019, definition of ‘postbiotic’ was pro-
posed as “preparation of inanimate microorganisms and/
or their components that confers a health benefit on the
host” by International Scientific Association of Probio-
tics and Prebiotics (ISAPP) [33].
The safety of probiotics is associated with their further

utilization. Although few studies have reported on this
issue, potential risks of probiotics existed, including gen-
etic stability, infectivity, or in situ toxin production [34,
35]. Postbiotics are inanimate microorganisms or their
product those lose the capacity to replicate or produce
and are free from the concerns above. However, a lower
risk of postbiotics does not mean that there is no risk.
Specific toxic metabolites or substrates might be released
from dead bacteria [36], which still need to be further
assessed.
The rate of live microorganisms in probiotics is uncer-

tain at the end of shelf life due to the death of live mi-
croorganisms during different storage conditions [37].
Therefore, probiotics is commonly included in excess of
dose to avoid the loss of live microorganisms during the
production [38]. In contrast, the potential effects of dead
microorganisms in the probiotic products were usually
ignored. Postbiotics can maintain stability during indus-
trial process and storage in long shelf life, making it
more potentialities in application than probiotics [29].
Thus, it is with possibility to control the precision
amount of postbiotics in the products during processing.

Components of postbiotics
Diverse components and molecules derived from micro-
organisms still exist in postbiotics after processing, con-
tributing to host health in different ways. To discover
the beneficial effects and mechanisms of components in
postbiotics, they were purified and administrated in both
in vivo and in vitro studies. In this part, we summarize
the potentially probiotic components as postbiotics re-
ported in previous studies, and these components in-
cludes exopolysaccharides, wall polysaccharides, teichoic
acids (wall teichoic acids and lipoteichoic acids), surface
layer proteins and bacterial DNA and metabolites and so
on (Fig. 1).

Exopolysaccharides
Exopolysaccharides (EPS) are extracellular carbohydrate
polymers with high molecular weight compounds pro-
duced and secreted by microorganisms [39], which
attracted attention due to the therapeutic potential in
medical applications and the food industry during the
past decades [40]. EPS can be found abundantly in lactic
acid bacteria (LAB), including Lactobacillus, Lactococcus,

Bifidobacterium, Leuconostoc, Pediococcus, Streptococcus,
and Weissella [41, 42]. EPS such as xanthan, sphingan,
alginate, cellulose show the capability in water-binding,
water-retention water, and immense swelling and gel-
ation, which could act as a protective barrier via promot-
ing biofilm formation on the bacterial cell surfaces [43,
44]. Beneficial effects of EPS to gut health were ob-
served, including antimicrobial [45], immunomodulatory
[46], and anti-inflammatory activities [47]. An in vitro
study revealed the EPS produced by Lactobacillus rham-
nosus isolated from human breast milk showed substan-
tial antibacterial activity against the pathogens
Salmonella enterica serovar Typhimurium and Escheri-
chia coli [48]. The previous study showed pretreatment
of IPEC-J2 cells with EPS isolated from L. rhamnosus
GG (LGG) could attenuate LPS-induced MAPK and NF-
κB as well as alleviate the inflammatory cytokines and
TLR activation at mRNA level [49]. Moreover, EPS
could prevent bacterial adhesion to the epithelium and
contribute to the epithelial barrier integrity in the gut
[50]. An in vivo studies showed EPS derived from Bifido-
bacterium breve UCC2003 could prevent bacterial adhe-
sion to the intestinal epithelium [51]. Transepithelial
electrical resistance (TEER) is often used to assess epi-
thelial cell barrier function [52]. Exopolysaccharides
from Lactobacillus plantarum NCU116 induce apoptosis
via TLR2 in mouse intestinal epithelial cancer cells,
which demonstrated that EPS116/TLR2/MyD88 signal-
ing activated c-Jun N-terminal kinase (JNK) and pro-
moted c-Jun phosphorylation to promote upregulation
of Fas/Fasl and to trigger apoptotic signaling [53].

Cellular wall fragments
Most of the probiotics to date, including Lactobacillus
and Bifidobacterium, are gram-positive [54]. The cell
wall of gram-positive bacteria is a complex assemblage
of peptidoglycan, teichoic acids, polysaccharides, and
proteins [55] which are considered beneficial compo-
nents to the host.
Peptidoglycan consists of β-1,4-linked N-

acetylglucosamine and N-acetylmuramic disaccharide
units and accounts for approximately 90% of the weight of
the cell wall in gram-positive bacteria [56]. Previous stud-
ies have revealed that peptidoglycan derived from probio-
tics or commensal LAB might play a positive role in
maintaining the immune balance of the gut. The peptido-
glycan of heat-killed L. casei, L. johnsonii JCM 2012T, and
L. plantarum ATCC 14917T could inhibit the production
of IL-12 through Toll-like receptor 2 (TLR2) in the gut,
which further maintains homeostasis in the host [57]. The
protective capacity of purified peptidoglycan from L. sali-
varius Ls33 was observed in IL-10 dependent pathway
through induction of regulatory CD103+ DCs and regula-
tory T cells in the gut of mice [58].
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Teichoic acids are anionic polymers made of alditol-
phosphate repeating units and can be classified into wall
teichoic acids (WTAs) and lipoteichoic acids (LTAs)
[59]. The function of teichoic acids in regulation of cell
physiology remains to be investigated, but the

importance of teichoic acids has been highlighted in
host-cell adhesion, inflammation, and immune activation
[60]. The immunostimulatory effects of LTAs were ob-
served via binding to TLR2 and activating cytokine re-
lease [61]. LTAs purified from L. casei YIT 9029 and L.

Fig. 1 Beneficial compounds and potential mechanisms of postbiotics in gut health and animal production. The components of postbiotics,
including exopolysaccharides, wall teichoic acids, lipoteichoic acids, wall polysaccharides, S-layer proteins, unmethylated CpG motifs, metabolites
exert beneficial effects on the gut health, mainly through the inhibition of pathogens, reinforce gut barrier function, and immunoregulation
mechanisms. Postbiotics can be used as growth promoter and alternative to antibiotics in animal production. CpG, cytosine-guanine dinucleotide
in particular base contexts; TLR, Toll-like receptor
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fermentum YIT 0159 could induce TNF-α secretion
from murine macrophages via a TLR2-mediated strain-
dependent mechanism [62]. The structures of WTA are
more diverse than those of LTA, and the immune signal-
ing of WTA is still debated [63, 64]. A previous study
showed that the purified WTAs of L. plantarum strains
did not induce the secretion of any cytokines when ap-
plied in human dendritic cells [65]. Apart from the bene-
ficial effects of teichoic acid, the safety of teichoic acid
still needs to be tested since the excessive inflammatory
response might be triggered [30].
Bacterial wall polysaccharides can be divided into three

groups, including exopolysaccharides (EPS), capsular
polysaccharides (CPS), and cell wall polysaccharides
(WPS). Unlike EPSs loosely associated with the cell sur-
face, the CPSs are permanently attached to the cell, and
WPS may or may not be covalently attached to the cell
wall but do not form a capsule [55]. Since EPS has been
discussed above, the beneficial effects of CPS and WPS
were discussed here. CPS is a highly hydrated molecule
that contains over 95% water, protecting cells from des-
iccation in adverse conditions [66]. In addition, the CPS
was considered to be immunomodulating molecules and
has been reported to be important virulence factors in
pathogenic bacteria [67, 68]. For LAB, WPS plays a role
in cell division and morphology, protection against
phagocytosis [69], adhesion, and biofilm formation in
bacterial physiology [70], while the beneficial effects of
purified WPS remain to be investigated in the future.
The proteinaceous surface layer (S-layer) are the basic

components of gram-positive and gram-negative bacteria
and provide important functional properties [71]. Pro-
teins in S-layer, known as S-layer proteins (SLPs), repre-
sent one of the most abundant cellular proteins and
interact with the host and its immune system [72]. The
SLPs of probiotics could contribute to the adhesion to
epithelial cells and extracellular matrix proteins, thus
inhibiting the pathogens’ infections and further benefit-
ing the host [73]. Indeed, SLPs in Lactobacillus strains
isolated from pig intestine play an important role in ad-
hesion and competitive exclusion of E. coli and Salmon-
ella enteritidis in Caco-2 cells [74]. Spent culture
supernatants of L. kefir with significant amounts of SLPs
could inhibition the invasion of Salmonella in Caco-2/
TC-7 cells [75]. SLPs isolated from L. acidophilus could
block the viral infection via binding DC-specific intercel-
lular adhesion molecule 3-grabbing non-integrin in 3 T3
cells [76].

Bacterial DNA
The bacterial DNA can be recognized by the vertebrate
immune system, especially unmethylated cytosine-
guanine dinucleotide (CpG motifs) in particular base
contexts [77]. Unmethylated CpG motifs are prevalent

in bacterial but are heavily suppressed and methylated in
vertebrate genomic DNAs, which could play an immu-
nomodulatory effect via the TLR9-MyD88-NF-κB signal-
ing pathway [78]. For example, a high frequency of CpG
motifs was identified in the DNA of B. longum
NCC2705, which might be one of the reasons that they
play an important role in the immunostimulatory prop-
erties [79]. The synthetic oligodeoxynucleotides (ONDs)
contain CpG motifs were found to be effective immuno-
therapy in several diseases, including the treatment of
kidney, skin, breast, uterine, and immune malignancies
[80]. Furthermore, CpG-ONDs derived from LGG could
attenuate inflammatory cytokine TNF-α and IL-6 pro-
duction in LPS-stimulated cells, which exerted an anti-
inflammation effect on epithelial cells [81]. Apart from
the unmethylated GpG motifs, the probiotic DNA was
also found to possess immune modulation effects. Puri-
fied genomic DNA from the mixture of LGG and B.
longum BB536 could enhance the intestinal barrier func-
tion and preventing food allergic response in rats [82].
Moreover, pure DNA of Bifidobacterium, which was iso-
lated from feces, also showed an anti-inflammatory ef-
fect in peripheral blood mononuclear cells, including the
decrease of IL-1β and increase of IL-10 [83].

Metabolites
Probiotics could interact with the host via metabolites,
including indole, SCFAs, vitamins, and other metabo-
lites. Cell-free supernatants (CFS) contain metabolites
derived from probiotics were investigated in several pre-
vious studies. CFS of L. reuteri AN417, the strain iso-
lated from porcine small intestine, showed greater
antimicrobial activity against oral pathogenic bacteria
than other Lactobacillus strains such as KCTC 3594 and
KETC 3678. The carbohydrates and/or fatty acid metab-
olites in the CFS of L. reuteri AN417 might be the main
antimicrobial factors in reducing biofilm’s integrity and
suppressing the expression of genes involved in biofilm
formation [84]. Previously study showed that culture
supernatant from probiotics isolated from breast milk-
fed infants, including L. paracasei CNCM I-4034, B.
breve CNCM I-4035, and L. rhamnosus CNCM I-4036
inhibits the growth of enterotoxigenic and enteropatho-
genic bacteria [85]. L. reuteri ZJ617 isolated from piglets
showed probiotic attributes [74], ZJ617 culture super-
natant attenuated liver injury induced by LPS via sup-
pression of hepatic TLR4/MAPK/NF-κB activation,
apoptosis, and autophagy in mice [86]. The culture
supernatant of L. paracasei CNCM I-4034 could modu-
late the Salmonella-induced inflammation of human
intestinal-like dendritic and Caco-2 cells [87]. CFS of
cultures originated from sixteen strains of Lactobacilli
and Bifidobacteria prevented E. coli from entering into
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small and large intestine in human colonic adenocarcin-
oma cell lines, T84 and Caco2 cells [88].

Beneficial of postbiotics on gut health
Protective effects against pathogens
Disturbance of gut microbiota, such as the colonization
of pathogens and overgrowth of indigenous pathobionts,
leads to the damage of gut health and diseases. Postbio-
tics can be used as a therapeutic approach to inhibit
pathogens mainly via the components and competition
for adhesion to mucosa and epithelium in the gut [89].
Metabolites such as lactic acids, bacteriocins, and SCFAs
in postbiotics were observed to have a role in protecting
from invasion by pathogens via diffusion across the bac-
terial membrane and reducing pH value in the gut [90].
Studies showed lactic acid and bacteriocins from lactic
acid bacteria have antimicrobial activity and might be
the alternatives to antibiotics [91, 92]. Moreover, exten-
sive studies revealed the beneficial effects of SCFAs
against the pathogens in the gut, including acetate, pro-
pionate, butyrate. Acetate derived in the gut could pro-
tect against respiratory syncytial virus infection via
activation of GPR43 in pulmonary epithelial cells and
promotion IFN-β response in mice [93]. An in vitro
study revealed that propionate directly inhibited S. typhi-
murium growth by disrupting intracellular pH homeo-
stasis and mediated the colonization resistance to S.
typhimurium infection in the gut [94]. Single-cell RNA-
sequencing showed the butyrate could imprints potent
antimicrobial activity in macrophage differentiation
through HDAC3 function [95]. Bacteriocins are small
antimicrobial peptides that exhibit inhibitory activity
against pathogens and can be a potential candidate for
antimicrobial agents in the application of food and
pharmaceutics [96, 97]. For example, a purified bacteri-
ocin from L. helveticus PJ4 isolated from Wistar Rat
showed a bactericidal mode of action against E. coli and
E. faecalis DT48 [98]. The metabolites in postbiotics in-
hibit pathogens directly but also contribute to cross-
feeding on micronutrients in the gut bacteria [99].
In addition to direct antimicrobial activity, postbiotics

could modulate the gut microbiota and inhibit the path-
ogens, possibly via quorum sensing and adhesion.
Quorum sensing is a process of cell-cell communication
that allows bacteria to sense population density and
regulate their behavior collectively [100]. The block of
quorum sensing, called quorum quenching, can be ap-
plied in the control of bacterial infections and biofilm
formation [101]. Enzymes from bacterial with quorum
quenching activity, including lactonases and acylases,
showed the ability to degrade the N-Acyl homoserine
lactones (AHLs), which led to the inhibition of biofilm
formation of Pseudomonas aeruginosa PAO1 [102]. Al-
though the approaches targeting quorum sensing were

reported as a therapy for pathogens [103], the efficiency
and mechanisms of quorum quenching still remain de-
bate which require further investigation [104]. The adhe-
sion ability of probiotics also plays a potential protective
role against pathogens through competition for the
binding sites in the epithelium [105]. High adherence
ability to Caco-2 cells was observed in heat-killed L.
acidophilus strain LB (Lactobacillus Boucard), which
exerted the inhibition effect of different diarrheagenic
bacteria, including enterotoxigenic and enteropathogenic
E.coli [106], suggesting the adherence ability still existed
in postbiotics.

Benefits for gut barrier function
The gut barrier strongly interacts with the gut bac-
teria, which could regulate the absorption of nutri-
ents, electrolytes, and water from the lumen into the
circulation and prevent toxic entities and pathogens
[107]. Beneficial effects of postbiotics on the gut bar-
rier were observed by eliminating the risk of intes-
tinal translocation or local inflammation [108].
Pretreatment of SLP from L. acidophilus NCFM im-
proved integrity and permeability, restored ZO-1 and
occludin protein expression in Caco-2 cells. More-
over, SLP also attenuated the cell apoptosis and
inhibited TNF-α by suppressing the activation of
NF-κB [109]. Similar protective effects on Caco-2
cells were observed in purified SLPs from L. plan-
tarum by increasing the transepithelial resistance
and down-regulating permeability [110]. Metabolites
such as SCFAs exist in postbiotics could also con-
tribute to the gut barrier function improvement
[111]. A study on mice revealed propionate could
improve the tight junction through the AKT signal-
ing pathway [112]. Studies showed that administra-
tion of acetate, propionate, butyrate alone or in
combination boosted transepithelial resistance and
stimulated the formation of tight junction in both
in vitro and in vivo [113, 114]. Besides, mucin
MUC2 expression and secretion can be stimulated
by butyrate in goblet cells, which prevents pathogens
from destroying enterocytes [115]. Moreover, pro-
teins p40 secreted from LGG could modulate the in-
testinal epithelial cell homeostasis through the
activation of estimated glomerular filtration rate
(EGFR) in young adult mouse colon epithelial cells
and human colonic epithelial cell line, and T84 cells
[116]. An in vitro study showed that protein
HM0539 purified from LGG could enhance mucin
expression and prevent LPS or TNF-α from inducing
gut barrier injury. In mice study, it was verified that
HM0539 could promote the development of neonatal
intestinal defense and prevent the infection of E. coli
K1 [117].
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Immunomodulatory effects on gut
Increasing evidence suggested that substances in post-
biotics could interact with the gut immune system and
show the potential of immunomodulatory and pharma-
ceutical effects in individuals [29, 118]. Pattern recogni-
tion receptors (PRRs) such as Toll-like receptors (TLRs),
nucleotide-binding oligomerization domain-like recep-
tors (NLRs), C-Type lectin-like receptors (CTLRs), and
G-protein-coupled receptors (GPCRs) in the gut could
recognize components in postbiotics and further induce
downstream signaling cascades for beneficial function on
the host [65, 119]. The immune functions can be acti-
vated by SCFAs through GPCRs, like GPR41, GPR43,
and GPR109A, which have shown therapeutic potential
in inflammatory bowel diseases [120]. SLP of L. helveti-
cus SBT2171 induced the expression of human β-
defensin by activating JNK signaling through TLR2 in
Caco-2 cells [121]. SLP-8348 from L. kefiri increased the
expression of IL-6 and IL-10 at both transcription and
protein levels, and further improved the murine macro-
phages’ response to LPS in a Ca2+-dependent manner
[122]. Furthermore, a study on mice revealed that SLP-
8348 exerts immunostimulatory activity through the in-
teractions with mincle [123]. Proteins secreted from pro-
biotics were also observed to have immunomodulatory
effects, such as p40 and p75 identified from Lactobacilli
species [124]. Proteins p40 and p75 produced from LGG
can ameliorate the epithelial barrier disruption by a
PKC- and MAP kinase-dependent manner [125].
Unmethylated CpG DNA in postbiotics could be recog-
nized by TLR9 and lead to the recruitment of adapter
protein MyD88 and activation of NF-κB, which initiate a
cascade of innate and adaptive immune responses in the
host [126, 127]. Since postbiotics consist of a wide range
of molecules, the immunomodulatory effects of postbio-
tics might not perform by only one single factor. An
in vitro study showed expression of prostaglandin E2
and IL-8 was downregulated by CFS of L. acidophilus,
L. casei, L. lactis, L. reuteri, and Saccharomyces bou-
lardii in human colon epithelial HT-29 cells. In
addition, peculiar anti-inflammatory effects of super-
natants from probiotics were also observed in the
modulation of IL-1β, IL-6, TNF-α, and IL-10 produc-
tion in human macrophages [128]. Heat-killed pro-
biotic bacteria have also been shown to have an
immunomodulatory effect in the gut, which are similar to
live bacteria [25]. Previous study showed heat-killed lactic
acid bacteria such as L. paracasei could induce IL-12 se-
cretion that enhances the innate immunity in mice [129].
The addition of heat-inactivated probiotic B. bifidum
OLB6378 exerts beneficial effects on the mucosal immune
system by upregulation of polymeric immunoglobulin re-
ceptor mRNA expression in mouse intestinal explant
model [130].

Application of postbiotics in animal production
Apart from the therapeutic effects in mice and human
health, postbiotics have been applied in animal produc-
tion as potential alternatives for antibiotics [131]. We
summarized the application of postbiotics in swine,
poultry, and ruminants reported in previous studies
(Table 1).

Swine
Beneficial effects of postbiotics were observed in
swine for the growth promoter and regulation of the
immune system. Strains from L. rhamnosus isolated
from pigs were cultured and processed by heating at
80 °C for 30 min. Dietary inclusion 1 × 109 CFU/g of
this kind of product could improve production per-
formance, including growth rate, feed efficiency, and
apparent total tract digestibility of dry matter in
weaned pig. What’s more, pigs fed postbiotics showed
reduced post-weaning diarrhea rate together with
lower TNF-α, transforming growth factor-β1, and cor-
tisol in serum than that in control group [132, 133].
Feeding of 0.5% metabolites combination from strains
of L. plantarum TL1, RG14, and RS5 isolated from
Malaysian foods in the piglet diet could improve aver-
age daily gain and daily feed intake, as well as reduce
diarrhea incidence in the postweaning piglets. What’s
more, lower Enterobacteriaceae (ENT), higher LAB
counts and SCFA levels in the gut of piglets were ob-
served [135]. Similar results were observed in weaned
piglets fed with liquid metabolite combinations de-
rived from strains including L. plantarum TL1, RG11,
RG14, RS5 and RI11. In addition to the improvement
of growth performance, metabolite combinations de-
rived from L. plantarum strains could contribute to
higher villus height of duodenum, suggesting the ap-
plication of postbiotics could benefit the gut morph-
ology in piglets [134]. Since early weaning usually
induced atrophy of villous, oral administration of
heat-killed and dried cell preparation of Enterococcus
faecalis strain EC-12 led to the higher villous of je-
junum in piglets weaned at 21-day-old, suggesting the
postbiotics could protect the gut health and relief
weaning stress in piglets [136]. Also, immunomodula-
tory ability of postbiotics in weaned piglets was also
observed. Oral administration of heat-killed E. fae-
cium strain NHRD IHARA led to the increase in
serum IgA production in weaned piglets, which
showed similar effects with the administration of live
cells [137]. On the other hand, heat-killed strain E.
faecium strain NHRD IHARA also showed beneficial
effects on growth performance in pigs [138]. Daily in-
take of heat-killed L. plantarum L-137 induced higher
levels of IFN-β and gene expression in the whole
blood cells of pigs, which might subsequently
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augment host defense against the virus infection
[139]. However, Busanello et al. showed treatment
with inactivated probiotics cells including L. spp. and
L. plantarum showed no significant effects on blood
parameters and microbiological counts in the gut of
piglets during lactation [140]. Sprat-dried L. plan-
tarum strain 22F, 25F, Pediococcus acidilactici 72 N
isolated from pig feces exhibited beneficial effects in
the nursery-finishing pigs, including a better feed con-
version ratio, increase of Lactobacilli counts, decrease

of Enterobacterial counts in the gut, which demon-
strated the feasibility of substitute for antibiotics
[141].

Poultry
Postbiotics has been applied in poultry as well. For in-
stance, as mentioned above, heat-killed Enterococcus fae-
calis strain EC-12 also applied in newly hatched broilers
from age of 3 to 14. Supplement with heat-killed Entero-
coccus faecalis strain EC-12 increased total IgA in the

Table 1 Beneficial effects of different postbiotics supplementation on animal production

Animal Postbiotics Dosage Beneficial effects Reference

Weaned piglets HK of L. rhamnosus 0.1%, 0.2%, or
0.4% in diet with
1 × 109 CFU/g

Increased growth rate, feed efficiency, and apparent total
tract digestibility; decreased TNF-α, TGF-β1, and cortisol in
serum

[132, 133]

Weaned piglets CFS of L. plantarum TL1, RS5,
RF14, RG11, and RI11

0.3% in diet Increased feed conversion ratio, lactic acid bacteria count,
and SCFA in the gut; decreased fecal pH value, ENT count,
and diarrhea incidence

[134]

Weaned piglets CFS of L. plantarum TL1, RS5,
RG14

0.5% in diet Improved average daily gain, feed intake, and protein
digestibility; reduce diarrhea incidence, pH value and ENT in
the gut

[135]

Weaned piglets HK of Enterococcus faecalis
EC-12

0.05% in diet Improved villous atrophy and increased villous heights in
small intestine

[136]

Weaned piglets HK of Enterococcus faecium
NHRD IHARA

0.1% in diet with
2 × 1010 CFU/kg
HK

Improved growth performance, serum IgA and gut
morphology; showed same efficacy as live strain

[137, 138]

Weaned piglets HK of L. plantarum L-137 20 mg/kg in diet Increased IFN-β mRNA levels in serum against influenza A
virus infection

[139]

Newborn piglets HK of L. spp. and L. plantarum 8.6 × 107 CFU/mL Increased feed intake and weight gain [140]

Newborn piglets L. plantarum 22F, 25F,
Pediococcus acidilactici 72 N

1 × 109 CFU/mL Increased daily gain and feed conversion ratio; increased
viable Lactobacilli and decreased enterobacterial counts;
improve gut morphology

[141]

Broiler chicks at 1-
day old

HK of Enterococcus faecalis
EC-12

0.05% in diet Increased total IgA in cecal digesta and IgG levels in the
serum; reduced VRE colonization in the intestine

[142]

Broiler chicks at 1-
day old, layers at 23-
week old

CFS of L. plantarum TL1, RS5,
RF14, RG11, RG14, and RI11

0.3% in diet Increased in hen-day egg production, reduced fecal patho-
gens population; increased final body weight, weight gain,
feed conversion ratio, gut morphology, and SCFA levels in
gut

[143, 144]

Broiler chicks at 1-
day old, 22-day old,
or 88-day old

CFS of L. plantarum RI11 0.3% in diet Increased body weight, feed conversion ratio; improved villi
height in small intestine, increased IgM and IgG levels in
serum, increased hepatic IGF-1 mRNA expression level

[145–148]

Broiler chicks at 14-
day old

PC of Pediococcus acidilactici,
L. reuteri, Enterococcus
faecium, L. acidophilus

1 oz/gallon in
water

Reduces the proinflammatory response, alternative to
antibiotics in the context of Clostridium perfringens pathogen
challenge

[149]

Broiler chicks at 1-
day old

HK of Bacillus subtilis, L.
acidophilus BFI

2 × 108 CFU/mL Enhanced feed efficiency, decreased plasma cholesterol and
creatinine contents, altered cecal microbiota composition

[150]

Layer hens at 24-
week old

HK of L. salivarius, Bacillus
subtilis

400 g/t in diet Improved daily egg yield, feed conversion, damaged egg
ratio, and Haugh unit; Decreased in total cholesterol, and
lipoprotein cholesterol; increased antibody against avian
influenza virus

[151]

Postweaning lambs
at 112-day old

CFS of L. plantarum RG14 0.9% in diet Increased weight gain, feed intake, nutrient intake, and
nutrient digestibility; increased fiber degrading bacteria and
decreased total protozoa and methanogens in rumen;
lowered leukocyte, lymphocyte, basophil, neutrophil and
platelets; improved ruminal epithelium growth and integrity
of intestinal barrier; increased IL-6 mRNA and decreased IL-
1β, IL-10, TNF mRNA in jejunum

[152–154]

HK heat-killed, CFS cell-free supernatant, PC pure culture, VRE vancomycin-resistant enterococci, SCFA short chain fatty acid, ENT Enterobacteriaceae
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cecal digesta and total IgG in the serum, and reduced
vancomycin-resistant enterococci (VRE) colonization in
the intestine, suggesting this kind of postbiotics could
stimulate the gut immune system and reinforce the im-
mune reaction against the VRE challenge to accelerate its
defecation in chicken [142]. The addition of metabolite
combination of L. plantarum RS5, RI11, RG14, and RG11
strains could increase fecal lactic acid bacteria counts, villus
height, and volatile fatty acids in broiler chickens [143].
What’s more, chicks fed with CFS of L. plantarum RI11
showed improvement of growth performance, including
higher final body weight, total weight gain and average daily
gain than other groups, suggesting the L. plantarum RI11
could be used as an alternative antibiotic growth promoter.
Also, supplementation of postbiotics improved the gut
morphology, lowered ENT and E. coli counts and caecal
pH value in the gut but showed limited effect on plasma
IgA level [145, 146]. Anti-stress effects of postbiotics L.
plantarum RI11 were also observed via regulation of anti-
oxidant enzyme activity, gut barrier genes, and cytokine,
acute phase proteins in broilers [147, 148]. In addition,
postbiotic metabolite combinations derived from L. plan-
tarum strains RI11 also reduced fecal ENT levels, improved
egg quality and increase hen-day egg production in laying
hens [144]. Apart from strains from Lactobacillus, postbio-
tics from Bacillus subtilis also showed beneficial effects in
laying hens and broilers, including feed efficiency, egg qual-
ity, and immune response [150, 151]. Postbiotics product
from a cocktail containing Pediococcus acidilactici, L. reu-
teri, Enterococcus faecium, and L. acidophilus could im-
prove weight gain and alleviate the proinflammatory
responses after the challenge of Clostridium perfringens in
broilers [149].

Ruminants
In ruminants, an in vitro study revealed the alteration of
rumen fermentation and bacteria composition after sup-
plementary of postbiotics from L. plantarum RG14, in-
cluding elevated ruminal volatile fatty acid (VFA) and
population of total bacteria, cellulolytic bacteria, and
total protozoa [155]. When the same postbiotics were
applied in postweaning lambs for 60 d, improvement of
rumen epithelium and intestinal barrier function was ob-
served, including the increase of ruminal papillae growth
and upregulation of tight junction protein-1, Claudin-1,
and Claudin-4 mRNA levels. Lambs fed with postbiotics
from L. plantarum RG14 also showed increase of IL-6
mRNA and decrease of mRNA of IL-1β, IL-10, TNF in
the jejunum, suggesting the immunomodulation effects
of postbiotics in ruminants [152–154].

Conclusions
The utilization of postbiotics has shown great potential
and can be an alternative to antibiotics in animal

production (Fig. 1). However, despite the fact that the in-
animate of postbiotics makes it more stable and safer than
probiotics, the exact composition in postbiotics remains to
be identified in the future, which would make it more cap-
able and convinced in the application. Moreover, although
studies have investigated the mechanism of a single factor
in postbiotics, the complex interaction between diverse
compounds and host can exist. Therefore, as an integration
of various compounds, the exact mechanism of the postbio-
tics is needed to be further illustrated in future studies.
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