Open Access

A post-GWAS confirming the genetic effects and functional polymorphisms of *AGPAT3* gene on milk fatty acids in dairy cattle

Lijun Shi^{1,2†}, Xin Wu^{1†}, Yuze Yang³, Zhu Ma⁴, Xiaoqing Lv⁴, Lin Liu⁴, Yanhua Li⁴, Feng Zhao⁴, Bo Han¹ and Dongxiao Sun^{1*}

Abstract

Background: People are paying more attention to the healthy and balanced diet with the improvement of their living standards. Milk fatty acids (FAs) have been reported that they were related to some atherosclerosis and coronary heart diseases in human. In our previous genome-wide association study (GWAS) on milk FAs in dairy cattle, 83 genome-wide significant single nucleotide polymorphisms (SNPs) were detected. Among them, two SNPs, ARS-BFGL-NGS-109493 and BTA-56389-no-rs associated with C18index (*P* = 0.0459), were located in the upstream of 1-acylglycerol-3-phosphate O-acyltransferase 3 (*AGPAT3*) gene. *AGPAT3* is involved in glycerol-lipid, glycerol-phospholipid metabolism and phospholipase D signaling pathways. Hence, it was inferred as a candidate gene for milk FAs. The aim of this study was to further confirm the genetic effects of the *AGPAT3* gene on milk FA traits in dairy cattle.

(Continued on next page)

⁺Lijun Shi and Xin Wu contributed equally to this work.

¹Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China

Full list of author information is available at the end of the article

[©] The Author(s). 2021 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, with http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

^{*} Correspondence: sundx@cau.edu.cn

(Continued from previous page)

Results: Through re-sequencing the complete coding region, and 3000 bp of 5' and 3' regulatory regions of the *AGPA T3* gene, a total of 17 SNPs were identified, including four in 5' regulatory region, one in 5' untranslated region (UTR), three in introns, one in 3' UTR, and eight in 3' regulatory region. By the linkage disequilibrium (LD) analysis with Haploview4.1 software, two haplotype blocks were observed that were formed by four and 12 identified SNPs, respectively. Using SAS9.2, we performed single locus-based and haplotype-based association analysis on 24 milk FAs in 1065 Chinese Holstein cows, and discovered that all the SNPs and the haplotype blocks were significantly associated with C6:0, C8:0 and C10:0 (*P* < 0.0001–0.0384). Further, with Genomatix, we predicted that four SNPs in 5' regulatory region (g.146702957G > A, g.146704373A > G, g.146704618A > G and g.146704699G > A) changed the transcription factor binding sites (TFBSs) for transcription factors SMARCA3, REX1, VMYB, BRACH, NKX26, ZBED4, SP1, USF1, ARNT and FOXA1. Out of them, two SNPs were validated to impact transcriptional activity by performing luciferase assay that the alleles A of both SNPs, g.146704373A > G and g.146704618A > G, increased the transcriptional activities of *AGPAT3* promoter compared with alleles G (*P* = 0.0004).

Conclusions: In conclusion, our findings first demonstrated the significant genetic associations of the *AGPAT3* gene with milk FAs in dairy cattle, and two potential causal mutations were detected.

Keywords: AGPAT3, Chinese Holstein, Genetic effects, Milk fatty acids, Potential causal mutation

Introduction

Milk fat is one of critical breeding objectives in dairy cattle. It is comprised of triglyceride (>95%), diglyceride (2%), phospholipids (1%), cholesterol (0.05%) and small amount of free fatty acids (FAs) (~0.1%) [1]. The main components of triglyceride are glycerin and FAs, in which, the FAs act as precursors for the formation of other aroma components, such as esters and alcohols [2]. For the various milk fatty acid traits in Holstein cows, the estimated heritability values have been reported to be 0.14–0.33 for saturated fatty acids (SFAs) and 0.08–0.29 for unsaturated fatty acids (UFAs) [3–7].

Genome-wide association study (GWAS) is a commonly used strategy to identify potential genetic variants underlying important complex traits in human and domestic animals. So far, some candidate genes and QTL regions for milk production traits have been detected with GWA studies in dairy cattle, such as DLGAP1, AP2B1, SCD, BTA11 (1.59–3.37 Mb), and BTA3 (70.34–73.69 Mb) [8– 13]. In our previous GWAS for milk FAs in Chinese Holstein cows, 83 genome-wide significant single nucleotide polymorphisms (SNPs) were detected in total [12], in which, two SNPs (ARS-BFGL-NGS-109493 and BTA-56389-no-rs) associated with C18index (P = 0.0459), were located in the upstream of 1-acylglycerol-3-phosphate Oacyltransferase 3 (AGPAT3) gene. In addition, we performed a joint GWAS for milk FAs in combined Chinese and Danish Holstein populations and found that a chromosome-wide significant QTL region of 146.29-146.31 Mb on BTA1 was associated with C18:0 [13]. The AGPAT3 gene was nearby this region with approximately 400 kb. 1-acylglycerol-sn-glycero 3-phosphate acyltransferase (AGPAT), encoded by the AGPAT3 gene, is one of the isoforms of AGPATs [14] and is involved in the glycerolipid (ko00561) and glycerophospholipid metabolisms (ko00564), and phospholipase D signaling pathway (ko04072). Mammalian AGPAT catalyzed the acylation of lysophosphatidic acid to form the phosphatidic acid that was the precursor of all glycerplipids [14]. Therefore, it was implied that the *AGPAT3* gene was a promising candidate gene for milk FA traits in dairy cattle. The purpose of the present study was to further detect whether the *AGPAT3* gene had significant genetic effects on milk FAs in a Chinese Holstein cow population.

Materials and methods

Animals and phenotypic data

In this study, a total of 1065 Chinese Holstein cows were used as descripted in a previous research [15], which milk samples were collected in Beijing Dairy Cattle Center (www.bdcc.com.cn) to measure milk FA contents. With the gas chromatography method, a total of 16 milk FAs (C6:0, C8:0, C10:0, C11:0, C12:0, C13:0, C14:0, C14:1, C15:0, C16:0, C16:1, C17:0, C17: 1, C18:0, C18:1*cis*-9 and C20:0) were measured as the weight proportion of total fat weight [12]. With the phenotypes, we calculated five indices based on the formula $\frac{cis$ -9unsaturated}{cis-9unsaturated} × 100 [16]: C14index = $\frac{C14:1}{C14:1+C14:0} \times 100$, C16index = $\frac{C16:1}{C16:1+C16:0} \times 100$, C17index = $\frac{C17:1}{C17:1+C17:0} \times 100$, C18index = $\frac{cis-9}{C18:1cis-9+C18:0} \times 100$, and total index =

 $\frac{C14:1+C16:1+C17:1+C18:1cis-9}{C14:1+C14:0+C16:1+C16:0+C17:1+C17:0+C18:1cis-9+C18:0}\times 100$. In addition, the summarized SFA and UFA, and SFA/UFA were obtained as well.

SNP identification and genotyping

Based on the genomic sequence of bovine *AGPAT3* gene (Gene ID: 506607), 14 pairs of primers (Table S1) were designed by the Primer 3 version 4.0 (http://bioinfo.ut.

ee/primer3-0.4.0/) and were synthesized in the Beijing Genomics Institute (Beijing, China) to amplify all the exons with partial adjacent intron region, and 3000 bp of 5' and 3' regulatory regions. As previously descripted [15], two DNA pools were constructed and the polymerase chain reaction (PCR) amplifications were performed with each DNA pool as template. To identify potential polymorphisms, the PCR amplification products were bidirectionally sequenced with an ABI3730XL DNA analyzer (Applied Biosystems, Foster, CA, USA). Then, the identified SNPs were genotyped for the 1065 cows by the matrix-assisted laser-desorption/ionization time of flight mass spectrometry (MALDI-TOF MS, Sequenom MassARRAY, Bioyong Technologies Inc., HK).

Linkage disequilibrium (LD) and association analyses

We estimated the LD among the identified SNPs of *AGPAT3* gene with Haploview 4.1 (Broad Institute, Cambridge, MA, USA).

For association analysis, the 1065 cows were traced back to three-generation pedigrees to construct the kinship matrix (A-matrix) by SAS 9.2 (SAS institute, Cary, NC, USA), so that 3335 individuals were totally included. Single-locus and haplotype-based associations with 24 kind of milk FAs were performed by the following mixed animal model with SAS 9.2:

$$Y_{iiklm} = \mu + G_i + h_i + l_k + a_l + \mathbf{b} \times M_m + e_{iiklm}$$

Here, Y_{ijklm} is the phenotypic value of each milk fatty acid trait; μ is the overall mean; G_i is the fixed effect corresponding to the genotype or haplotype combination of individual *i*; h_j (j = 1-23) and l_k (k = 1-4) were the fixed effect of farm *j* and stage of lactation *ll*, respectively; a_l is the random polygenic effect; M_m (m = 1-293) is the fixed effect of age at calving *m*; *b* is the regression coefficient of covariate *M*; and e_{ijklm} is the random residual. Further, we calculated the additive effect (a), dominant effect (d), and allele substitution effect (α) according to $a = \frac{AA - BB}{2}$, $d = AB - \frac{AA + BB}{2}$, $and\alpha = a + d(q - p)$ [17]. Here, AA, AB and BB were the least square means of milk FAs corresponding to the genotypes, and *p* and *q* were the frequencies of allele A and B, respectively.

Prediction of changes of transcription factor binding sites (TFBSs) caused by the SNPs in 5' regulatory region

We used the Genomatix software suite v3.9 (http://www.genomatix.de/cgi-bin/welcome/welcome.pl?s=d1b5 c9a9015b02bb3b1a806f9c03293f) [18] to predict whether the four SNPs in 5' regulatory region of *AGPAT3* (g. 146702957G > A, g.146704373A > G, g.146704618A > G, and g.146704699G > A) changed the TFBSs.

Recombinant plasmid construction and luciferase assay

detect the allele-specific effects of the SNPs То g.146702957G > A, g.146704373A > G, g.146704618A > G, and g.146704699G > A on the transcriptional activity of AGPAT3 gene, eight luciferase reporter gene fragments (G and A of g. 146702957G > A; A and G of g.146704373A > G; A and G of g.146704618A > G; and G and A of g.146704699G > A) corresponding to the eight alleles of the four SNPs (Fig. 1a) were designed and synthesized (Genewiz, Suzhou, China). The eight fragments with the KpnI and Nhel restriction sites at the 5' and 3' termini, respectively, were cloned into the pGL4.14 luciferase assay vector (Promega, Madison, USA). In addition, all the plasmids were purified by the Endo-free Plasmid DNA Mini Kit II (OMEGA, omega bio-tek, Norcross, Georgia, USA), and were sequenced to confirm the integrity of each construct's insertion.

The human embryonic kidney (HEK) 293 T cells were cultured with Dulbecco's modified Eagle's medium (Gibco, Life Technologies) and 10% fetal bovine serum (Gibco) at 37 °C in a humidified incubator containing 5% CO_2 . Before transfection, about 2×10^5 cells were seeded in each 24-well plate. For eight luciferase reporter gene fragof 146702957G > A, g.146704373A > G, ments g. g.146704618A > G and g.146704699G > A, 500 ng constructed plasmid was co-transfected along with 10 ng pRL-TK Renilla luciferase reporter vector (Promega) into each well. All the experiments were performed in three replicates for each construct. Approximate 48 h after transfection, the cells were harvested and the activity of both firefly and Renilla luciferases were measured with a Dual-Luciferase Reporter Assay System (Promega) on a Modulus microplate multimode reader (Turner Biosystems, CA, USA). The average statistic of three replicates were calculated as the normalized luciferase data (Firefly/Renilla).

Results

Identification of SNPs

A total of 17 SNPs of the AGPAT3 gene was detected in this study (Table 1), which consisted of four (g.146702957G > A, g.146704373A > G, g.146704618A > G and g.146704699G > A) in 5' flanking region, one (g.146705692G > A) in 5' untranslated region (UTR), (g.146725085 T > C, g.146726096A > G three and g.146729107A > C in introns, one (g.146735090G > T)31 UTR, eight (g.146737188C > T, in and g.146737545G > A, g.146737748 T > C, g.146737849C > g.146737879 T > G, g.146737916 T > C, Τ, g.146737946C > T and g.146738055G > A) in 3' flanking region. The genotype and allele frequencies of the identified SNPs were presented in Table 1.

Estimation of LD among the identified SNPs of AGPAT3

We used the haploview 4.1 to estimate the LD among these 17 SNPs, and observed two haplotype blocks

Table	1	Information	of	17	SNPs	of	AGPAT3	gene	with	genotypic	and	allelic	freque	encies

SNP name	Location	Position (UMD 3.1.1)	GenBank No.	Origin	Genotypes	NO.	Frequency	Allele	Frequency
g. 146702957G > A	5' flanking region	Chr1: 146702957	rs210638665	NCBI	AA	78	0.0741	А	0.2692
					GG	564	0.5356	G	0.7308
					GA	411	0.3903		
g. 146704373A > G	5' flanking region	Chr1: 146704373	rs209442459	NCBI	AA	560	0.5369	А	0.7311
					GG	78	0.0748	G	0.2689
					GA	405	0.3883		
g. 146704618A > G	5' flanking region	Chr1: 146704618	rs110551271	NCBI	AA	520	0.4910	А	0.7030
					GG	90	0.0850	G	0.2970
					GA	449	0.4240		
g. 146704699G > A	5' flanking region	Chr1: 146704699	rs110278717	NCBI	AA	113	0.1076	А	0.3219
					GG	487	0.4638	G	0.6781
					GA	450	0.4286		
g. 146705692G > A	5' UTR	Chr1: 146705692	rs43281404	NCBI	AA	10	0.0095	А	0.1360
					GG	778	0.7374	G	0.8640
					AG	267	0.2531		
g. 146725085 T > C	Intron-5	Chr1: 146725085	rs110897007	NCBI	GG	634	0.6021	G	0.7835
					TT	37	0.0351	Т	0.2165
					GT	382	0.3628		
g. 146726096A > G	Intron-6	Chr1: 146726096	rs378285374	NCBI	CC	380	0.3647	С	0.6027
					TT	166	0.1593	Т	0.3973
					CT	496	0.4760		
g. 146729107A > C	Intron-7	Chr1: 146729107	rs43276015	NCBI	AA	166	0.1582	А	0.3990
					GG	378	0.3603	G	0.6010
					GA	505	0.4814		
g. 146735090G > T	3 ' UTR	Chr1:146735090	rs379405887	NCBI	CC	169	0.1608	С	0.4015
					TT	376	0.3578	Т	0.5985
					CT	506	0.4814		
g. 146737188C > T	3' flanking region	Chr1: 146737188	rs383583298	NCBI	CC	376	0.3588	С	0.6007
					TT	165	0.1574	Т	0.3993
					CT	507	0.4838		
g. 146737545G > A	3' flanking region	Chr1: 146737545	rs43766238	NCBI	GG	166	0.1587	G	0.3991
					TT	377	0.3604	Т	0.6009
					GT	503	0.4809		
g. 146737748 T > C	3' flanking region	Chr1: 146737748	rs43760756	NCBI	CC	169	0.1608	С	0.4015
					TT	376	0.3578	Т	0.5985
					TC	506	0.4814		
g. 146737849C > T	3' flanking region	Chr1: 146737849	rs43760757	NCBI	CC	371	0.3540	С	0.5973
					TT	167	0.1594	Т	0.4027
					CT	510	0.4866		
g. 146737879 T > G	3' flanking region	Chr1: 146737879	rs43760758	NCBI	AA	12	0.0114	А	0.1360
					GG	780	0.7393	G	0.8640
					AG	263	0.2493		
g. 146737916T>C	3' flanking region	Chr1: 146737916	rs43760759	NCBI	CC	536	0.5174	С	0.7210
					TT	78	0.0753	Т	0.2790

Table 1 Information of 17 SNPs of AGPAT3 gene with genotypic and allelic frequencies (Continued)

SNP name	Location	Position (UMD 3.1.1)	GenBank No.	Origin	Genotypes	NO.	Frequency	Allele	Frequency
					TC	422	0.4073		
g. 146737946C > T	3' flanking region	Chr1: 146737946	rs43760760	NCBI	AA	894	0.8442	А	0.9193
					GG	6	0.0057	G	0.0807
					AG	159	0.1501		
g. 146738055G > A	3' flanking region	Chr1: 146738055	rs382304348	NCBI	AA	208	0.2006	А	0.4619
					CC	287	0.2768	С	0.5380
					CA	542	0.5227		

Note: NO. Number of cows with corresponding genotypes. UTR Untranslated region

(Fig. 2) that was formed by four and 12 SNPs, respectively. The haplotype block 1 included four haplotype combinations, namely, H1: GAAG (38%), H2: GAAA (32.2%), H3: AGGG (26.6%), and H4: GAGG (3%), and the haplotype block 2 had six haplotype combinations: H1 = GTAAGCGTCTTC, H2 = GCACGTACTGCT, H3 = GCAATCGTCTTC, H4 = ACACGCGTCTTC, H5 = GTGATCGTCTTC, and H6 = GCAAGCGTCTTC with their frequencies of 20%, 39.8%, 13.4%, 13.4%, 7.9% and 4.1%.

Associations between AGPAT3 and milk FAs

The associations of the 17 SNPs with 24 milk FAs were summarized in Table 2. Among these SNPs, 17 were strongly associated with C6:0 (P < 0.0001 - 0.0004) and

C8:0 (P < 0.0001 - 0.0384); 14 were significantly associated with total index (P < 0.0001 - 0.0318); ten were significantly associated with C10:0 (P = 0.0016 - 0.0151); nine were strongly associated with C17:1 (P < 0.0001 - 0.0149); seven were significantly associated with C20:0 (P < 0.0001 - 0.0072); five had significant associations with C14:0 (P < 0.0001 - 0.0477); five were strongly associated with C17:ndex (P = 0.0006 - 0.0389); five had strong associations with C18:1*cis*-9 (P < 0.0001 - 0.0258); three had significant associations with C18:0 (P = 0.0020 - 0.0246); three had strong associations with SFA (P < 0.0001 - 0.0434); two were significantly associated with C17:0 (P = 0.0212 - 0.0413); two were significantly associated with UFA (P < 0.0001 and P = 0.0386); one was strongly associated with C18:index (P = 0.0249); and

+1
\geq
2
<u> </u>
Š
8
.⊆
te
SIC
Ĭ
Φ
S
Ē.
S
2
.∟
its
g
Ţ
.Э
a
Þ
at
Ť
Ē
Ľ
p
a
S
¥
$\overline{\mathbb{S}}$
17
C
ē
Š
₽ T
ă
Ç
.9
iat
Х
SSC
Š
2
Ð
q
D.

Table 2 Asso	sciation betw	veen 17 SNP	's and milk fa	itty acid traits	in Chinese H	olstein cows	$(LSM \pm SE)$						
SNP	Genotype (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
g.	AA(66-73)	0.5840±	0.9946±	2.8618±	0.0583 ±	3.0058 ±	0.0977±	10.1091 ±	0.6665 ±	0.9937 ±	34.7663 ±	1.3640 ±	0.5631 ±
146702957G >		0.0204 ^A	0.0175 ^A	0.0492	0.0048	0.0652	0.0055	0.1114ª	0.0323	0.0219	0.3048	0.0417	0.0055
∢	GG(473–	0.4264 ±	0.9187±	2.8278±	0.0584 ±	3.0015 ±	0.1003±	10.2460±	0.6475 ±	0.9909±	34.8480 ±	1.3327 ±	0.5693 ±
	509)	0.0119 ⁸	0.0106 ⁸	0.0319	0.0034	0.0410	0.0029	0.0695	0.0178	0.0120	0.1750	0.0247	0.0031
	GA(337–	0.5226±	0.9914±	2.8646 ±	0.0586 ±	3.0068 ±	0.0985 ±	10.3670±	0.6730 ±	0.9968±	34.8295 ±	1.3238 ±	0.5653 ±
	367)	0.0125 ^C	0.0111 [≜]	0.0330	0.0035	0.0425	0.0030	0.0713 ^b	0.0189	0.0128	0.1822	0.0255	0.0032
	Ρ	<.0001**	<.0001***	0.2626	0.9962	0.9854	0.7895	0.0095**	0.2843	0.8721	0.9581	0.5783	0.2642
g.	AA(470-	0.4101±	0.8829±	2.8096 ±	0.0579±	3.0240 ±	0.0997 ±	10.2422 ±	0.6411 ±	0.9906±	34.8165 ±	1.3326 ±	0.5696 ±
146704373A >	505)	0.0120 ^A	0.0106 ^A	0.0318	0.0035	0.0410	0.0028	0.0699	0.0179	0.0121	0.1762	0.0246	0.0031
U	GG(66–73)	0.5641 ± 0.0205 ^B	0.9368± 0.0173 ^B	2.8117± 0.0499	0.0571 ± 0.0047	3.0067 ± 0.0652	0.0967 ± 0.0055	10.1221± 0.1115	0.6567 ± 0.0324	0.9887 ± 0.0222	34.8297 ± 0.2999	1.3626 ± 0.0423	0.5643 ± 0.0055
	GA(332–	0.5002±	0.9533±	2.8525 ±	0.0574±	3.0271 ±	0.0975 ±	10.3515±	0.6651 ±	0.9959±	34.8408 ±	1.3192 ±	0.5641 ±
	361)	0.0127 ^C	0.0111	0.0334	0.0036	0.0429	0.0030	0.0717	0.0190	0.0129	0.1846	0.0260	0.0033
	Ρ	<.0001**	<.0001**	0.1676	0.9561	0.9398	0.7032	0.0261*	0.3318	0.8781	0.9871	0.5151	0.1370
g.	AA(437-	0.4167±	0.9070±	2.8322±	0.0579±	3.0223 ±	0.0998±	10.2405 ±	0.6421 ±	0.9925±	34.7496 ±	1.3183 ±	0.5698 ±
146704618A >	474)	0.0121 ^A	0.0107 ^A	0.0323 ^A	0.0035	0.0414	0.0029	0.0701	0.0181	0.0122	0.1778	0.0250	0.0031 ^a
IJ	GG(76–84)	0.5594 ± 0.0193 ^{Ba}	0.9726± 0.0164 ⁸	2.8859 ± 0.0473	0.0582 ± 0.0045	3.0483 ± 0.0612	0.0982 ± 0.0052	10.2407 ± 0.1056	0.6692 ± 0.0300	0.9926± 0.0207	34.6202 ± 0.2865	1.3507 ± 0.0398	0.5638 ± 0.0052
	GA(368–	0.5155±	1.0007±	2.9155±	0.0588±	3.0496 ±	0.0997 ±	10.3059±	0.6706 ±	0.9956±	34.8113 ±	1.3120 ±	0.5621 ±
	396)	0.0123 ^{Bb}	0.0109 ^B	0.0324 ^B	0.0035	0.0421	0.0030	0.0708	0.0185	0.0125	0.1797	0.0251	0.0032 ^b
	Ρ	<.0001**	<.0001**	0.0016**	0.8984	0.6596	0.9495	0.4364	0.1903	0.9604	0.7525	0.5678	0.0212*
g.	AA(97-102)	0.4391 ±	0.9396±	2.8484 ±	0.0590 ±	3.0193 ±	0.0979±	10.3492 ±	0.6572 ±	0.9839±	34.6861 ±	1.2832 ±	0.5629 ±
146704699G >		0.0173 ^A	0.0151 ^A	0.0435	0.0043	0.0569	0.0047	0.0976	0.0273	0.0189	0.2593	0.0362	0.0048
∢	AG(366–	0.4614±	0.9274±	2.8053±	0.0574±	3.0216±	0.0972±	10.2789±	0.6434 ±	0.9898±	34.8492 ±	1.3158 ±	0.5682 ±
	402)	0.0125 ^A	0.0108 ^A	0.0325 ^A	0.0035	0.0421	0.0030	0.0714	0.0185	0.0125	0.1810	0.0253	0.0032
	GG(412–	0.5119±	0.9886±	2.8843±	0.0591 ±	3.0363 ±	0.1006±	10.3046±	0.6607 ±	1.0021 ±	34.7333 ±	1.3390 ±	0.5647 ±
	443)	0.0124 ^B	0.0110 ^B	0.0330 ⁸	0.0035	0.0417	0.0030	0.0707	0.0185	0.0126	0.1806	0.0252	0.0032
	Ρ	<.0001**	<.0001***	0.0040***	0.6878	0.8808	0.5248	0.6869	0.5672	0.4571	0.6735	0.2175	0.3310
g.	AA(9)	0.2969 ±	0.8508±	2.7974 ±	0.0544 ±	3.0099 ±	0.1107±	9.8944 ±	0.6254 ±	0.9965 ±	35.1757 ±	1.2628 ±	0.5820±
146705692G >		0.0462 ^A	0.0393	0.1115	0.0099	0.1491	0.0136	0.2514	0.0768	0.0536	0.7126	0.0991	0.0133
∢	GG(638–	0.4844 ±	0.9413±	2.7966±	0.0577±	3.0048 ±	0.0975 ±	10.1890±	0.6495 ±	0.9888±	34.8014 ±	1.3316 ±	0.5665 ±
	690)	0.01 14 ⁸	0.0103	0.0307	0.0034	0.0393	0.0026	0.0666 ^A	0.0168	0.0113	0.1658	0.0233	0.0029
	GA(230–	0.4644 ±	0.9309±	2.8012±	0.0596 ±	3.0349 ±	0.1021±	10.4710±	0.6425 ±	1.0037 ±	34.8758 ±	1.3301 ±	0.5663 ±
	250)	0.0140 ⁸	0.0120	0.0361	0.0037	0.0459	0.0035	0.0777 ^B	0.0211	0.0144	0.2043	0.0284	0.0036
	Ρ	<.0001**	0.0384*	0.9829	0.6338	0.6684	0.2420	<.0001**	0.8836	0.4783	0.7941	0.7785	0.4920
g. 146725085	CC(449–	0.4525±	0.9110±	2.8094 ±	0.0587±	2.9767 ±	0.0991 ±	10.2790±	0.6482 ±	0.9924 ±	34.9341 ±	1.3135 ±	0.5675 ±
T > C	486)	0.0121 ^A	0.0108 ^A	0.0324	0.0035	0.0417	0.0029	0.0705	0.0180	0.0123	0.1775	0.0250	0.0031
	CT(347–	0.5018 ±	0.9664±	2.8207 ±	0.0576±	2.9839 ±	0.0981 ±	10.1990±	0.6559 ±	0.9954 ±	34.7645 ±	1.3526±	0.5690 ±

	Ã.
	2
•	1
	F
	õ
(Ĵ
	\sim
í	$\widehat{\Pi}$
Ū	7
	+1
	_
-	\geq
(N
5	┛
	5
	ž
	2
	0
	_
	╘
	Ð.
	S
	Ō
-	Ť
	~
	ŝ
	ΰ
	Ē
•	7
ī	5
	~
	⊆
	_
	5
•	ā
	F
	O
•	_
•	Ξ
•	g
	y acı
	tty acı
:	fatty aci
:	< tatty aci
	IIIK fatty aci
	milk fatty aci
:	milk fatty aci
	d milk fatty aci
:	and milk fatty aci
	and milk fatty aci
	's and milk fatty aci
	NPS and milk fatty aci
	NPS and milk fatty aci
	SNPS and milk fatty aci
	/ SNPS and milk fatty aci
	1 / SNPs and milk fatty aci
	n 17 SNPs and milk fatty aci
	en 17 SNPs and milk fatty aci
	/een 17 SNPs and milk fatty aci
	ween 17 SNPs and milk fatty aci
	etween 17 SNPs and milk fatty aci
	oetween 17 SNPs and milk fatty aci
	i between 17 SNPs and milk fatty aci
	in between 17 SNPs and milk fatty aci
	ion between 17 SNPs and milk fatty aci
	ation between 17 SNPs and milk fatty aci
	ciation between 17 SNPs and milk fatty aci
	ociation between 17 SNPs and milk fatty aci
	sociation between 17 SNPs and milk fatty aci
	Association between 17 SNPs and milk fatty aci
	Association between 1/ SNPs and milk fatty aci
	Z Association between 1/ SNPS and milk fatty aci
	2 Association between 1/ SNPS and milk fatty aci
	Ie 2 Association between 1/ SNPs and milk fatty aci
	ble 2 Association between 1/ SNPs and milk fatty aci
	able 2 Association between 1/ SNPs and milk fatty aci

Table 2 Asso	ciation betw	veen 17 SNP:	's and milk fa	tty acid traits	in Chinese H	Iolstein cows	s (LSM±SE)	(Continued)					
SNP	Genotype (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
	376)	0.0126 ^B	0.0111 ^B	0.0336	0.0036	0.0430	0:0030	0.0720	0.0189	0.0129	0.1858	0.0260	0.0033
	TT(65–70)	0.4274 ± 0.0202 ^A	0.9116± 0.0170 ^A	2.8365 ± 0.0487	0.0610± 0.0047	3.0082 ± 0.0641	0.1018± 0.0054	10.2449± 0.1100	0.6607 ± 0.0313	1.0009 ± 0.0216	34.7673 ± 0.2953	1.2804 ± 0.0416	0.5651 ± 0.0054
	Ρ	<.0001**	<.0001**	0.7754	0.6288	0.8546	0.7757	0.3190	0.8512	0.9063	0.5001	0.0673	0.7081
g.	AA(740-	0.4677 ±	0.9597 ±	2.8758±	0.0578±	3.0394 ±	0.0996 ±	10.3084 ±	0.6553 ±	0.9947 ±	34.9294 ±	1.3251 ±	0.5646 ±
146726096A >	804)	0.0113 ^A	0.0101 ^A	0.0304	0.0034	0.0390	0.0026	0.065 7 ^a	0.0166	0.0111	0.1634	0.0230	0.0028
U	AG(136–	0.4266±	0.9216±	2.8526±	0.0557 ±	3.0084 ±	0.0974 ±	10.1355 ±	0.6513 ±	0.9798 ±	34.4974 ±	1.3088 ±	0.5732 ±
	144)	0.0157 ^{Bb}	0.0136 ^B	0.0395	0.0040	0.0521	0.0041	0.0879 ^b	0.0242	0.0166	0.2316	0.0324	0.0042
	GG(4–5)	0.6162 ± 0.0686^{a}	0.9142± 0.0513	3.0515± 0.1473	0.0701 ± 0.0129	3.1630± 0.1962	0.0981 ± 0.0180	10.5609 ± 0.3391	0.5784 ± 0.1024	0.9762 ± 0.0715	34.9285 ± 0.9476	1.2342 ± 0.1318	0.5561 ± 0.0178
	Р	0.0004**	0.0015**	0.3415	0.4269	0.5976	0.8364	0.0314*	0.7439	0.5894	0.0865	0.6686	0.0541
g.	AA(166–	0.5256±	0.9758±	2.8547±	0.0565 ±	2.9831 ±	0.0988±	10.1650±	0.6707 ±	0.9933±	34.7045 ±	1.3271 ±	0.5650±
146729107A >	183)	0.0149 ^{Aa}	0.0127 ^A	0.0375 ^b	0.0039	0.0487	0.0037	0.0823	0.0228	0.0156	0.2154	0.0304	0.0039
U	CC(240-	0.4039 ±	0.8846±	2.7656±	0.0564 ±	2.9740 ±	0.0988±	10.2943 ±	0.6559 ±	0.9904 ±	34.7739 ±	1.3319±	0.5718±
	260)	0.0138 ^B	0.0119 ^B	0.0356 ^{Aa}	0.0037	0.0458	0.0034	0.0782	0.0207	0.0142	0.2011	0.0282	0.0036ª
	CA(461–	0.4901 ±	0.9650±	2.8525±	0.0587 ±	3.0187 ±	0.0984 ±	10.2937 ±	0.6552 ±	0.9991 ±	34.8408 ±	1.3357 ±	0.5640 ±
	492)	0.0121 ^{Ab}	0.0108 ^A	0.0323 ^B	0.0035	0.0413	0.0029	0.0696	0.0180	0.0121	0.1767	0.0247	0.0031 ^b
	Ρ	<.0001**	<.0001**	0.0020**	0.5029	0.3680	0.9905	0.1253	0.7282	0.7714	0.7516	0.9431	0.0413*
g.	GG(524–	0.4596 ±	0.9428±	2.8328±	0.0589±	3.0735 ±	0.1001 ±	10.3081 ±	0.6514 ±	0.9965 ±	34.8202 ±	1.3414 ±	0.5697 ±
146735090G >	568)	0.0118 ^A	0.0105	0.0315	0.0034	0.0404	0.0027	0.0686	0.0176	0.0118	0.1713	0.0240	0.0030
_	GT(326–	0.4480 ±	0.9288±	2.8230±	0.0576±	3.0090 ±	0.0974 ±	10.1970±	0.6592 ±	0.9898 ±	34.7381 ±	1.3009 ±	0.5673 ±
	349)	0.0127 ^A	0.0113 ^A	0.0334	0.0036	0.0430	0.0031	0.0723	0.0190	0.0129	0.1858	0.0260	0.0033
	TT(26–31)	0.7225± 0.0295 ^B	0.9944 ± 0.0233 ^B	2.9134± 0.0675	0.0537± 0.0061	3.0448 ± 0.0882	0.0929± 0.0078	10.0790± 0.1526	0.6209 ± 0.0446	0.9771 ± 0.0317	34.5408 ± 0.4264	1.3066 ± 0.0590	0.5726± 0.0078
	Ρ	<.0001**	0.0069**	0.3563	0.5402	0.1107	0.4694	0.0477*	0.6492	0.7195	0.7122	0.1367	0.5951
g.	CC(317–	0.5244 ±	0.9949±	2.8918±	0.0589±	3.0228 ±	0.0999±	10.1935 ±	0.6581 ±	0.9988±	34.7063 ±	1.3351 ±	0.5678 ±
146737188C >	344)	0.0129 ^A	0.0113 ^A	0.0339 ^{Aa}	0.0036	0.0438	0.0031	0.0741	0.0194	0.0132	0.1890	0.0264	0.0034
F	CT(413–	0.4912±	0.9489±	2.8306±	0.0585 ±	3.0423 ±	0.0981 ±	10.2310±	0.6511 ±	0.9955±	34.8170 ±	1.3330 ±	0.5697 ±
	448)	0.0123 ^B	0.0106 ⁸	0.0323 ^b	0.0035	0.0413	0.0029	0.0697	0.0179	0.0122	0.1770	0.0248	0.0031
	TT(137-	0.4013±	0.9270±	2.7818±	0.0579±	2.9847 ±	0.0968±	10.0919±	0.6586 ±	0.9790±	34.6458 ±	1.3487 ±	0.5753 ±
	148)	0.0157 ^C	0.0135 ^B	0.0397 ⁸	0.0040	0.0514	0.0040	0.0876	0.0242	0.0166	0.2300	0.0321	0.0042
	Ρ	<.0001**	<.0001**	0.0020**	0.9407	0.3982	0.7234	0.1655	0.8950	0.4650	0.6289	0.8567	0.1793
g.	AA(137-	0.4117±	0.9200±	2.8094 ±	0.0565 ±	2.9638 ±	0.0975 ±	10.1601 ±	0.6582 ±	0.9801 ±	34.5818 ±	1.3322 ±	0.5706 ±
146737545G >	148)	0.0157 ^A	0.0135 ^{Aa}	0.0396 ^a	0.0040	0.0514	0.0040	0.0876	0.0241	0.0166	0.2305	0.0322	0.0042
A	GG(316–	0.5261 ±	0.9867±	2.9008±	0.0584 ±	3.0218 ±	0.1007 ±	10.2857 ±	0.6558 ±	1.0007 ±	34.6776 ±	1.3318 ±	0.5654 ±
	343)	0.0130 ^B	0.0113 ⁸	0.0339 ^b	0.0036	0.0435	0.0031	0.0729	0.0194	0.0132	0.1877	0.0263	0.0033
	GA(419–	0.5097 ±	0.9491 ±	2.8496 ±	0.0576±	3.0188±	0.0982 ±	10.3073 ±	0.6492 ±	0.9951 ±	34.8114 ±	1.3239 ±	0.5665 ±
	455)	0.0121 ^B	0.0107 ^{Ab}	0.0319	0.0035	0.0412	0.0029	0.0697	0.0179	0.0122	0.1754	0.0247	0.0031

	$\overline{\mathcal{D}}$
	2
	1
	5
	5
(J
	-
í	
č	ה
	11
	τı
2	\geq
ō	2
÷	<u> </u>
	_
	Ś
	§.
	2
	U
	\Box
•	ā
	Ĕ
-	~
	<u> </u>
-	L
	сD
	ŝ
	Ψ
	╘
7	9
(\mathcal{I}
	_
	╘
	S
	╘
	ē
	┙
-	0
•	ŏ.
	ĕ
	2
	₽
	片
ç	Ĕ
-	\leq
-	Ξ
	F
	_
	2
	Я
1	۲'
-	⇒
đ	$\overline{\Delta}$
	. '
	\geq
	_
	Ψ
	₹
	8
	5
	Õ
	2
	F
	\cong
	Ħ
•	÷.
	ĸ
	പ്
	S
1	4
	N
	"
	-
	-
	0
	a
i	ad

Table 2 Asso	ociation betv	veen 17 SNP	s and milk fa	tty acid traits	in Chinese F	Iolstein cow	s (LSM ± SE)	(Continued)					
SNP	Genotype (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
	Ρ	<.0001**	<.0001**	0.0134*	0.7932	0.3853	0.6416	0.1234	0.8841	0.4545	0.4569	0.9184	0.4321
g. 146737748	CC(139–	0.3955±	0.9086±	2.8149±	0.0575 ±	2.9404 ±	0.0977 ±	10.1822 ±	0.6542 ±	0.9773 ±	34.6990 ±	1.3348 ±	0.5735 ±
T > C	151)	0.0156 ^A	0.0134 ^{Aa}	0.0393 ^A	0.0040	0.0514	0.0040	0.0867	0.0240	0.0165	0.2295	0.0317	0.0041
	CT(420-	0.4892 ±	0.9386±	2.8760±	0.0583±	3.0032 ±	0.0994 ±	10.3018±	0.6476 ±	0.9927 ±	34.8666 ±	1.3342 ±	0.5674 ±
	455)	0.01 21 ^{Ba}	0.0107 ^{Ab}	0.0323	0.0035	0.0410	0.0028	0.0699	0.0179	0.0122	0.1762	0.0246	0.0031
	TT(314-	0.5161 ±	0.9793±	2.9154±	0.0585 ±	2.9957 ±	0.1015±	10.2819±	0.6574 ±	0.9975 ±	34.7461 ±	1.3359 ±	0.5663 ±
	341)	0.0130 ^{Bb}	0.0113 ^B	0.0336 ^B	0.0036	0.0439	0.0031	0.0737	0.0194	0.0131	0.1888	0.0267	0.0034
	Ρ	<.0001**	<.0001**	0.0106*	0.9369	0.3252	0.6124	0.2573	0.8346	0.4587	0.6140	0.9969	0.1867
g.	CC(313–	0.5257 ±	0.9965±	2.8975 ±	0.0593 ±	2.9970 ±	0.1005 ±	10.2313 ±	0.6588 ±	0.9977 ±	34.6572 ±	1.3386 ±	0.5673 ±
146737849C >	340)	0.0130 ^{Aa}	0.0114 ^A	0.0338 ^{Aa}	0.0036	0.0438	0.0031	0.0740	0.0194	0.0133	0.1886	0.0265	0.0034
F	CT(421–	0.4959±	0.9498±	2.8322±	0.0586±	3.0009 ±	0.0980±	10.2479±	0.6471 ±	0.9947 ±	34.8335 ±	1.3318 ±	0.5693±
	457)	0.0121 ^{Ab}	0.0106 ^B	0.0324 ^b	0.0035	0.0410	0.0029	0.06960	0.0178	0.0122	0.1766	0.0246	0.0031
	TT(136–	0.4106±	0.9285±	2.7934±	0.0579±	2.9274 ±	0.0968 ±	10.1267 ±	0.6600 ±	0.9804 ±	34.6245 ±	1.3495 ±	0.5746 ±
	147)	0.0157 ^B	0.0134 ⁸	0.0392 ^B	0.0040	0.0518	0.0040	0.0874	0.0243	0.0166	0.2293	0.0323	0.0042
	Ρ	<.0001**	<.0001**	0.0022**	0.8856	0.2126	0.6079	0.2572	0.7288	0.5650	0.4155	0.8199	0.2053
g. 146737879	GG(137–	0.4117±	0.9053±	2.7827±	0.0575 ±	2.9852 ±	0.0962 ±	10.1224 ±	0.6588 ±	0.9809 ±	34.7225 ±	1.3232 ±	0.5739 ±
T > G	148)	0.0158 ^A	0.0135 ^{Aa}	0.0399 ^A	0.0040	0.0514	0.0040	0.0876	0.0239	0.0167	0.2283	0.0319	0.0042
	GT(416–	0.5013±	0.9359±	2.8248±	0.0589±	3.0364 ±	0.0977 ±	10.2698 ±	0.6513 ±	0.9975 ±	34.8734 ±	1.3154 ±	0.5663 ±
	452)	0.0121 ^B	0.0107 ^{Ab}	0.0323ª	0.0035	0.0412	0.0029	0.0696	0.0178	0.0122	0.1770	0.0246	0.0031
	TT(314-	0.5384 ±	0.9831±	2.8914±	0.0596±	3.0380 ±	0.0998 ±	10.2327 ±	0.6594 ±	1.0019±	34.7756 ±	1.3229 ±	0.5655 ±
	341)	0.0130 ^C	0.0113 ^B	0.0337 ^{Bb}	0.0036	0.0437	0.0031	0.0735	0.0194	0.0132	0.1892	0.0266	0.0034
	Ρ	<.0001**	<.0001**	0.0017**	0.7680	0.4448	0.6531	0.1295	0.8731	0.4325	0.6984	0.9269	0.0919
g. 146737916	CC(139–	0.3909±	0.9080±	2.8087±	0.0572 ±	2.9481 ±	0.0969 ±	10.2239 ±	0.6547 ±	0.9769 ±	34.6490 ±	1.3256 ±	0.5741 ±
T > C	151)	0.0155 ^A	0.0133 ^A	0.0392 ^a	0.0040	0.0512	0.0040	0.0870	0.0239	0.0165	0.2278	0.0320	0.0042
	TT(315–	0.5185 ±	0.9891 ±	2.9066±	0.0582 ±	3.0094 ±	0.1009 ±	10.2947 ±	0.6549 ±	0.9981 ±	34.7363 ±	1.3300 ±	0.5672 ±
	342)	0.0129 ⁸	0.0113 ^B	0.0338 ^b	0.0036	0.0435	0.0031	0.0734	0.0194	0.0131	0.1881	0.0266	0.0033
	CT(419-	0.4963 ±	0.9291 ±	2.8552±	0.0580±	3.0156 ±	0.0983±	10.3252 ±	0.6464 ±	0.9921 ±	34.7903 ±	1.3212 ±	0.5683 ±
	454)	0.0122 ⁸	0.0107 ^A	0.0320	0.0035	0.0411	0.0029	0.0696	0.0180	0.0122	0.1759	0.0246	0.0031
	Ρ	<.0001**	<.0001**	0.0088**	0.9406	0.2742	0.5637	0.3730	0.8589	0.4280	0.7790	0.9201	0.2206
g.	CC(309–	0.5219±	1.0049±	2.8350±	0.0588 ±	2.9994 ±	0.1004 ±	10.2241 ±	0.6597 ±	1.0016 ±	34.7602 ±	1.3334 ±	0.5630 ±
146737946C >	336)	0.0130 ^A	0.0113 ^A	0.0341 ^a	0.0036	0.0439	0.0032	0.0738	0.0193	0.0134	0.1890	0.0264	0.0034
_	TT(138–	0.4155±	0.9113±	2.7486±	0.0575 ±	2.9507 ±	0.0968 ±	10.1050 ±	0.6572 ±	0.9796 ±	34.6590 ±	1.3427 ±	0.5682 ±
	149)	0.0156 ⁸	0.0135 ⁸	0.0392 ^b	0.0040	0.0512	0.0040	0.0876	0.0242	0.0165	0.2300	0.0324	0.0042
	CT(424–	0.4999 ±	0.9464 ±	2.7811±	0.0582±	3.0044 ±	0.0981 ±	10.2450 ±	0.6447 ±	0.9973 ±	34.8888 ±	1.3304 ±	0.5650 ±
	460)	0.01 22 ^A	0.0106 ^C	0.0319	0.0035	0.0411	0.0029	0.0689	0.0179	0.0121	0.1760	0.0247	0.0031
	Ρ	<.0001**	<.0001**	0.0151*	0.8961	0.4414	0.6268	0.1510	0.6382	0.3945	0.4662	0.9099	0.4202
g.	AA(10-12)	0.6010±	1.0161 ±	2.8684 ±	0.0479 ±	3.0416±	0.0976±	10.3654 ±	0.6569 ±	0.9913 ±	35.1841 ±	1.3472 ±	0.5674 ±
146738055G >		0.0459 ^A	0.0354	0.1023	0.0090	0.1363	0.0122	0.2293	0.0695	0.0486	0.6782	0.0940	0.0122

ä
ž
2
Ę
5
Ŭ
C
Ω
S
+1
~
2
=
S
Ś
0
0
.⊆
Ð
St
0
Í
0.
Se
ي
.⊆
5
\cup
C
·—
ts
a:
Ę
~
·H
ă
~
£
ਯ
÷
ž
Ē
5
σ
Ē
10
5
Ē
5
<u> </u>
~
ē
eer
weer
etweer
betweer
n betweer
on betweer
tion betweer
iation betweer
ciation betweer
sociation betweer
ssociation betweer
Association betweer
2 Association betweer
2 Association betweer
le 2 Association betweer
Ible 2 Association between
rable 2 Association betweer

SNP	Genotype (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
A	AG(218-	0.5257±	0.9751 ±	2.7914 ±	0.0584 ±	2.9691 ±	0.0968±	10.1430 ±	0.6599 ±	0.9892 ±	34.7921 ±	1.3007 ±	0.5638±
	237)	0.0138 ^A	0.0122 ^A	0.0360	0.0037	0.0461	0.0035	0.0783	0.0210	0.0144	0.2040	0.0284	0.0036
	GG(650-	0.4368±	0.9454 ±	2.8074±	0.0592 ±	3.0454 ±	0.1003±	10.2445 ±	0.6563 ±	0.9931 ±	34.7389 ±	1.3298 ±	0.5711±
	700)	0.0115 ^B	0.0102 ⁸	0.0310	0.0034	0.0394	0.0026	0.0669	0.0169	0.0115	0.1667	0.0234	0.0029
	Ρ	<.0001**	0.0010**	0.6593	0.3930	0.0792	0.5412	0.1855	0.9801	0.9508	0.7698	0.4293	0.0622
SNP	Genotype (No.)	C1 7:1, %	C18:0, %	C18:1 <i>cis</i> -9. %	C18index, %	C20:0, %	C14index, %	C16index, %	C17index, %	SFA, %	UFA, %	SFA/UFA	Total index, %
g.	AA(62-73)	0.1943 ±	13.8892±	19.1043 ±	57.6323±	0.1666±	6.4077 ±	3.7684 ±	25.6833 ±	67.7650 ±	30.4810 ±	2.2673 ±	27.6986 ±
146702957G >		0.0042	0.1615	0.2147	0.4830	0.0031	0.2370	0.1055	0.3643	0.2901	0.2651	0.0383	0.2400
A	GG(424–	0.1895 ±	14.1758±	19.1790±	57.3457 ±	0.1722±	6.1345 ±	3.6753±	24.9133 ±	67.8726 ±	30.4841 ±	2.2689 ±	27.6651 ±
	511)	0.0024	0.0849	0.1155	0.2687	0.0017 ^A	0.1378	0.0635	0.2143	0.1595	0.1442	0.0209	0.1408ª
	GA(367–	0.1894 ±	14.0807 ±	18.9544 ±	56.9727 ±	0.1656±	6.3010±	3.6562 ±	24.9476 ±	68.0908 ±	30.1838 ±	2.2946 ±	27.3392 ±
	395)	0.0026	0.0916	0.1220	0.2812	0.0018 ^B	0.1449	0.0658	0.2258	0.1672	0.1525	0.0221	0.1492 ^b
	Ρ	0.4386	0.1580	0.1290	0.1783	0.0001**	0.2470	0.5211	0.0648	0.2479	0.0767	0.3992	0.0137*
g.	AA(420-	0.1913 ±	14.1259±	19.2191 ±	57.5363 ±	0.1730±	6.0812±	3.6613±	24.8788 ±	67.8406 ±	30.4771 ±	2.2695 ±	27.5503 ±
146704373A >	507)	0.0024	0.0853	0.1150	0.2686	0.0017 ^A	0.1397	0.0633	0.2148	0.1588	0.1448	0.0210	0.1427 ^A
IJ	GG(62–73)	0.1968 ± 0.0042	13.8793± 0.1644	19.1654± 0.2165	57.9715 ± 0.4858	0.1683 ± 0.0030	6.3322± 0.2387	3.7324± 0.1072	25.6137 ± 0.3613	67.7508 ± 0.2936	30.5383 ± 0.2663	2.2679 ± 0.0387	27.5179 ± 0.2397
	GA(290–	0.1909 ±	13.9943±	18.9787 ±	57.1583 ±	0.1660±	6.2187 ±	3.6303 ±	24.8785 ±	68.1000 ±	30.1883 ±	2.2966 ±	27.1837 ±
	361)	0.0026	0.0926	0.1240	0.2841	0.0018 ^B	0.1449	0.0667	0.2281	0.1698	0.1544	0.0224	0.1520 ^B
	Ρ	0.3096	0.1494	0.0995	0.1186	<.0001**	0.3517	0.5611	0.0732	0.1635	0.0790	0.3715	0.0065**
g.	AA(392-	0.1929±	14.1934 ±	19.3545 ±	57.3032 ±	0.1721±	6.1572 ±	3.6288 ±	24.6723 ±	67.9068 ±	30.5624 ±	2.2704 ±	27.6612 ±
146704618A >	475)	0.0025	0.0867 ^a	0.1167 ^a	0.2720	0.0017 ^A	0.1406	0.0640	0.2156	0.1614	0.1480	0.0212	0.1445 ^a
U	GG(69–84)	0.1980 ± 0.0039	13.8955 ± 0.1515	19.2130± 0.2015	57.7299 ± 0.4541	0.1661 ± 0.0029	6.3577 ± 0.2214	3.6981 ± 0.1002	25.3871 ± 0.3399	67.7817 ± 0.2744	30.6622 ± 0.2488	2.2769 ± 0.0362	27.7215 ± 0.2257
	GA(324–	0.1916±	13.9823±	19.0297 ±	57.2219±	0.1668±	6.3184±	3.6029±	24.6942 ±	68.1314 ±	30.2507 ±	2.3049 ±	27.3551 ±
	396)	0.0025	0.0885 ^b	0.1199 ^b	0.2775	0.0018 ^B	0.1421	0.0647	0.2223	0.1646	0.1491	0.0217	0.1486 ^b
	Ρ	0.2123	0.0182*	0.0137*	0.4975	0.0024**	0.3292	0.5736	0.0623	0.2011	0.0386*	0.2066	0.0173*
g.	AA(92-102)	0.1903 ±	13.8701 ±	19.3065 ±	57.8611 ±	0.1715 ±	6.2255±	3.5700±	24.3088 ±	67.8410 ±	30.3455 ±	2.2693 ±	27.7433 ±
146704699G >		0.0036	0.1379 ^b	0.1844	0.4127	0.0025	0.2057	0.0924	0.3144 ^A	0.2477	0.2268	0.0330	0.2080
∢	AG(324-	0.1886 ±	14.2179±	19.1440±	57.1301 ±	0.1695 ±	6.1203 ±	3.6496 ±	24.5937 ±	68.0257 ±	30.3321 ±	2.2872 ±	27.3897 ±
	443)	0.0025	0.0895 ^{Aa}	0.1202	0.2779ª	0.0017	0.1428	0.0646	0.2213 ^A	0.1649	0.1507	0.0217	0.1458
	GG(365–	0.1935 ±	13.9484 ±	19.2363 ±	57.7454 ±	0.1683 ±	6.2892 ±	3.7083 ±	25.1974 ±	67.8451 ±	30.4898 ±	2.2789 ±	27.6124 ±
	443)	0.0025	0.0895 ⁸	0.1189	0.2775 ^b	0.0017	0.1427	0.0653	0.2243 ⁸	0.1655	0.1492	0.0219	0.1479
	Ρ	0.0659	0.0020**	0.5640	0.0249*	0.4108	0.3721	0.2267	0.0006**	0.4504	0.5095	0.8274	0.0692
g.	AA(7-9)	0.1733 ±	14.3208±	19.6663 ±	57.2586 ±	0.1951 ±	6.0520±	3.4819±	23.4125 ±	68.1513 ±	30.5992 ±	2.2889 ±	27.5978 ±
146705692G >		0.0099	0.3965	0.5313	1.1637	0.0077 ^A	0.5535	0.2506	0.8489	0.7081	0.6477	0.0942	0.5625
A	GG(575-	0.1888±	14.1146 土	19.2113 ±	57.3378±	0.1706 ±	6.3397 ±	3.6825±	25.0231 ±	67.9010±	30.4947 土	2.2644 ±	27.5684 ±

(Continued)
$(LSM \pm SE)$
COWS
Holstein
Chinese
aits in (
acid tra
k fatty
and mil
SNPs a
en 17
hetwe
Association
Table 2

	500		5		.))))			(m)					
SNP	Genotype (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
	694)	0.0023	0.0794	0.1066 ^A	0.2523	0.0016 ^B	0.1305	0.0560	0.2052	0.1488	0.1354	0.0197	0.1365 ^A
	GA(200–	0.1887 ±	14.0965 ±	18.8330±	56.9865 ±	0.1645 ±	6.1097 ±	3.6635 ±	25.0126 ±	68.2087 ±	30.1774 ±	2.2906 ±	27.1387 ±
	250)	0.0028	0.1040	0.1399 ^B	0.3164	0.0020 [⊂]	0.1620	0.0723	0.2497	0.1901	0.1714	0.0251	0.1658 ^B
	Ρ	0.2854	0.8464	0.0042**	0.4179	<.0001**	0.1835	0.6902	0.1576	0.159	0.0946	0.4718	0.0034**
g. 146725085	CC(397–	0.1909 ±	14.0468 ±	19.0157 ±	57.2455 ±	0.1677±	6.1641 ±	3.6277 ±	24.8455 ±	68.0279 ±	30.2848 ±	2.2931 ±	27.3956 ±
T > C	486)	0.0025	0.0870	0.1164	0.2729	0.0017 ^A	0.1391	0.0641	0.2162	0.1619	0.1468	0.0213	0.1473ª
	CT(311–	0.1942 ±	14.0184 ±	19.2591 ±	57.6639±	0.1712±	6.2935 ±	3.7375 ±	25.2682 ±	67.7874 ±	30.5957 ±	2.2615 ±	27.6832 ±
	378)	0.0026	0.091 1	0.1234	0.2843	0.0018	0.1457	0.0663	0.2286	0.1695	0.1552	0.0222	0.1486 ^b
	TT(58-70)	0.1995 ± 0.0042	14.0374± 0.1585	19.4598± 0.2118	57.8594 ± 0.4752	0.1768± 0.0030 ^B	6.5092 ± 0.2316	3.5625 ± 0.1057	25.4392 ± 0.3615	67.6933 ± 0.2875	30.6268 ± 0.2630	2.2696 ± 0.0381	27.8078± 0.2388
	Ρ	0.0502	0.9442	0.0227*	0.1449	0.0026**	0.2133	0.0520	0.0294*	0.1896	0.0542	0.2723	0.0207*
g.	AA(672-	0.1894 ±	14.0391 ±	19.0281 ±	57.3355 ±	0.169 ±	6.1731±	3.6343 ±	24.7419 ±	68.0865 ±	30.2985 ±	2.2925 ±	27.4019 ±
146726096A >	805)	0.0023 ^A	0.0782 ^a	0.1066 ^A	0.2478	0.0015 ^A	0.1295	0.0594	0.1997 ^A	0.1467 ^A	0.1327 ^{Aa}	0.0193 ^A	0.1 349 ^A
J	AG(107-	0.2020±	14.3151 ±	19.6764 ±	57.6605 ±	0.1673 ±	6.3518±	3.6312 ±	25.5638 ±	67.3379 ±	31.0017 ±	2.2118 ±	28.0468 ±
	145)	0.0032 ^B	0.1199 ^b	0.1610 ^B	0.3664	0.0024 ^A	0.1821	0.0822	0.2780 ^B	0.2192 ^{8b}	0.1996 ⁸	0.0288 ^{Bb}	0.1811 ^{Bb}
	GG(4–5)	0.1718± 0.0133	14.6475 ± 0.5272	18.4707 ± 0.7012	55.4830 ± 1.5514	0.1989± 0.0100 ⁸	5.1590± 0.7400	3.3763 ± 0.3321	23.7060 ± 1.1 232	70.1075 ± 0.9410ª	28.1258 ± 0.8622 ^{Ab}	2.5679 ± 0.1243ª	25.9007 ± 0.7434ª
	Ρ	<.0001**	0.0246*	<.0001**	0.2737	0.0069**	0.1794	0.7344	0.0011**	<.0001**	<.0001**	0.0005**	<.0001**
g.	AA(157–	0.1904 ±	14.0091 ±	19.2419±	57.4468 ±	0.1745 ±	6.3828±	3.6593 ±	25.1709 ±	67.8911 ±	30.4868 ±	2.2755 ±	27.7110±
146729107A >	183)	0.0031	0.1119	0.1482	0.3385	0.0021 ^A	0.1703	0.0779	0.2648	0.2031	0.185	0.0266	0.1753
J	CC(219–	0.1883 ±	14.1061 ±	19.1574 ±	57.4101 ±	0.1676 ±	6.0951±	3.6834 ±	24.7129 ±	67.7963 ±	30.5267 ±	2.2672 ±	27.5823 ±
	259)	0.0028	0.1012	0.1368	0.3144	0.0020 [⊂]	0.1568	0.0720	0.2420	0.1872	0.1705	0.0248	0.1642
	CA(395–	0.1894 ±	13.9829 ±	19.1133±	57.5354 ±	0.1703±	6.0679±	3.6817 ±	24.9844 ±	67.9785 ±	30.3797 ±	2.2879 ±	27.5050±
	494)	0.0025	0.0864	0.1161	0.2712	0.0017	0.1391	0.0634	0.2181	0.1603	0.1454	0.0213	0.1431
	Ρ	0.7788	0.4157	0.6456	0.8887	0.0072**	0.0883	0.9350	0.1738	0.5431	0.5871	0.6297	0.3631
g.	GG(476–	0.1922 ±	14.0441 ±	19.0282 ±	57.3698 ±	0.1712±	6.0957 ±	3.6985 ±	24.8158 ±	68.0759 ±	30.3923 ±	2.2819 ±	27.5196 ±
146735090G >	569)	0.0024	0.0833	0.1124	0.2622	0.0016	0.1366	0.0616	0.2105	0.1559	0.1411	0.0204	0.1422
_	GT(284–	0.1934 ±	14.1213 ±	19.0764 ±	57.0423 ±	0.1697 ±	6.2102 ±	3.6004 ±	24.8500 ±	67.9829 ±	30.3837 ±	2.2809 ±	27.4330 ±
	351)	0.0026	0.0926	0.1241	0.2871	0.0018	0.146	0.0664	0.2284	0.1706	0.1551	0.0226	0.1490
	TT(20–31)	0.1984 ± 0.0058	14.3172 ± 0.2303	18.8872 ± 0.3054	56.3973 ± 0.6774	0.1786 ± 0.0049	6.0045 ± 0.3251	3.6534 ± 0.1493	24.9340 ± 0.5123	68.2537 ± 0.4099	30.2155 ± 0.3762	2.3215 ± 0.0547	27.2316± 0.3293
	Ρ	0.4841	0.3646	0.7827	0.1741	0.1494	0.5571	0.1695	0.9587	0.7056	0.8890	0.7477	0.5447
g.	CC(284–	0.1937±	14.0802 ±	19.0166 ±	57.2315 ±	0.1716±	6.1741 ±	3.6909 ±	25.3794 ±	68.0396 ±	30.3617 ±	2.2880 ±	27.4624 ±
146737188C >	344)	0.0026 ^b	0.0941	0.1268	0.2934	0.0018	0.1492	0.0677	0.2296	0.1746	0.1578	0.0228	0.1555
_	CT(361–	0.1877 ±	14.1547 ±	18.9851 ±	57.0650 ±	0.1689 ±	6.1248±	3.6688 ±	24.9450 ±	68.0867 ±	30.2470 ±	2.2958 ±	27.4299 ±
	448)	0.0025 ^{Aa}	0.0872	0.1163	0.2710	0.0017	0.1392	0.0638	0.2165	0.1608	0.1460	0.0214	0.1436ª
	TT(127-	0.1961 ±	14.1171 ±	19.3227 ±	57.5732 ±	0.1687 ±	6.1684±	3.7299±	25.2577 ±	67.6431 ±	30.6818 ±	2.2482 ±	27.8433 ±
	148)	0.0032 ^B	0.1204	0.1595	0.3627	0.0022	0.1817	0.0820	0.2793	0.2173	0.1987	0.0291	0.1864 ^b

ž
Э.
H
õ
Q
$\tilde{}$
ΞΨ.
5
+1
\geq
5
J
S
≥
Ō.
0
_⊆
Ð
st
0
Ť
۵,
SS
ę
÷
t)
2
.⊆
S
÷
2
+
<u>.</u>
ğ
≥
at
4
¥
2
5
p
E
പ്
Z
S
\sim
-
Ç
e e
¥
Ş
é
\Box
Ē
.9
at
·5
Ő
SS
\triangleleft
2
ž
å
L ²⁰

Table 2 Assc	ociation betw	/een 17 SNP.	s and milk fat	ty acid traits	in Chinese F	Holstein cow:	S (LSM \pm SE)	(Continued)					
SNP	Genotype (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
	Р	0.0017**	0.6908	0.0814	0.3152	0.1887	0.9103	0.6926	0.0529	0.0888	0.0682	0.2209	0.0318*
g.	AA(128-	0.1945 ±	14.0514±	19.4701 ±	57.9106 ±	0.1696 ±	6.2266±	3.6997 ±	24.9182 ±	67.4893 ±	30.7602 ±	2.2208 ±	27.9350 ±
146737545G >	148)	0.0032 ^a	0.1204	0.1601	0.3655	0.0023	0.1817	0.0817	0.2810	0.2187 ^a	0.1992	0.0288	0.1870 ^a
<	GG(283–	0.1931 ±	14.0176 ±	19.1472 ±	57.4943 ±	0.1711±	6.2523 ±	3.6694 ±	25.0728 ±	67.9662 ±	30.3993 ±	2.2747 ±	27.5125 ±
	343)	0.0026 ^A	0.0944	0.1258	0.2900	0.0018	0.1485	0.0677	0.2302	0.1728	0.1579	0.0230	0.1534 ^b
	GA(368–	0.1866±	14.0964 ±	19.1421 ±	57.3574 ±	0.1686±	6.1186±	3.6470 ±	24.6877 ±	68.0117 ±	30.3193 ±	2.2817 ±	27.5136±
	455)	0.0025 ^{Bb}	0.0863	0.1158	0.268	0.0017	0.1391	0.0635	0.2175	0.1589 ^b	0.1449	0.0210	0.1426 ^b
	Ρ	0.0017**	0.6564	0.0816	0.2603	0.3128	0.5090	0.7494	0.1064	0.0334*	0.0622	0.0756	0.0232*
g. 146737748	CC(130-	0.1979±	14.0913±	19.3639±	57.7773 ±	0.1711 ±	6.2361 ±	3.6841 ±	24.9868 ±	67.5538 ±	30.6795 ±	2.2365 ±	27.8452 ±
T > C	151)	0.0032 ^a	0.1188	0.1597	0.3626	0.0022	0.1823	0.0805	0.2789	0.2170	0.1968	0.0285	0.1856 ^a
	CT(366–	0.1899±	14.0907 ±	19.0535±	57.2339±	0.1698±	6.1569±	3.6787 ±	24.8028 ±	68.0054 ±	30.2417 ±	2.2852 ±	27.4570 ±
	455)	0.0025 ^b	0.0871	0.1157	0.2677	0.0017	0.1387	0.0634	0.2166	0.1596	0.1456	0.0211	0.1426 ^b
	TT(281–	0.1954 ±	14.0418±	19.0741 ±	57.2531 ±	0.1725±	6.2670±	3.6871 ±	25.1846 ±	68.0076 ±	30.3295 ±	2.2865 ±	27.4242 ±
	341)	0.0026ª	0.0941	0.1267	0.2940	0.0018	0.1472	0.0681	0.2305	0.1746	0.1583	0.0230	0.1548 ^b
	Ρ	0.0043**	0.8370	0.1110	0.2416	0.2563	0.6416	0.9876	0.1187	0.0646	0.0634	0.1604	0.0294*
g.	CC(280–	0.1942 ±	14.0479 ±	19.0461 ±	57.2827 ±	0.1715±	6.2705 ±	3.6784 ±	25.2872 ±	68.0036 ±	30.2563 ±	2.2749 ±	27.3959 ±
146737849C >	340)	0.0026 ^b	0.0944	0.1275	0.2941	0.0018	0.1497	0.0679	0.2299 ^a	0.1752	0.1585	0.0231	0.1549
_	CT(369–	0.1884 ±	14.1343 ±	19.0311 ±	57.1311 ±	0.1692 ±	6.1599±	3.6433 ±	24.8370 ±	68.1156 ±	30.1612 ±	2.2852 ±	27.3368 ±
	458)	0.0025 ^{Aa}	0.0867	0.1157	0.2686	0.0017	0.1381	0.0634	0.2170 ^b	0.1595 ^a	0.1454	0.0211	0.1429ª
	TT(126-	0.1968±	14.1515±	19.3218±	57.6388 ±	0.1698 ±	6.2904 ±	3.7417±	25.1958 ±	67.599±	30.5937 ±	2.2359 ±	27.7909 ±
	147)	0.0032 ^B	0.1209	0.1608	0.3647	0.0023	0.1813	0.0821	0.2806	0.2189 ^b	0.1985	0.0289	0.1867 ^b
	Ρ	0.0022**	0.5467	0.1496	0.3216	0.3580	0.5645	0.3874	0.0389*	0.0434*	0.0724	0.2010	0.0181*
g. 146737879	GG(127–	0.1950±	14.1331 ±	19.2864 ±	57.5884 ±	0.1668 ±	6.1986±	3.6782 ±	25.1214 ±	67.5294 ±	30.6096 ±	2.2448 ±	27.8407 ±
T > G	148)	0.0032 ^A	0.1199	0.1606	0.3617	0.0023	0.1806	0.0813	0.2807	0.2172	0.1983	0.0290	0.1859 ^a
	GT(363–	0.1860 ±	14.0937 ±	18.9996±	57.1175 ±	0.1662 ±	6.0816±	3.6252 ±	24.9443 ±	67.9798 ±	30.2380 ±	2.2917 ±	27.4284 ±
	452)	0.0025 ^B	0.0864	0.1170	0.2712	0.0017	0.1386	0.0634	0.2164	0.1605	0.1464	0.0212	0.1438 ^b
	TT(281–	0.1926±	14.0683 ±	18.9898±	57.2233±	0.1694 ±	6.2251±	3.6573 ±	25.3307 ±	67.9566 ±	30.2822 ±	2.2935 ±	27.4250 ±
	341)	0.0026 ^A	0.0950	0.1260	0.2916	0.0018	0.1478	0.0683	0.2299	0.1740	0.1578	0.0228	0.1552 ^b
	Ρ	0.0007**	0.8640	0.1380	0.3760	0.1390	0.4621	0.7092	0.1116	0.0763	0.1374	0.1878	0.0258*
g. 146737916	CC(130–	0.1958 ±	14.0216±	19.4421 ±	57.8855 ±	0.1702 ±	6.2201 ±	3.675 ±	25.1146 ±	67.5382 ±	30.7478 ±	2.2388 ±	27.8821 ±
T > C	151)	0.0031 ^a	0.1184	0.1594	0.3621	0.0023	0.1802	0.0810	0.2768	0.2176	0.1974	0.0284	0.1855 ^a
	TT(282–	0.1941 ±	13.9730 ±	19.1122 ±	57.3779 ±	0.1720±	6.2657±	3.6778 ±	25.3034 ±	67.9870 ±	30.3957 ±	2.2897 ±	27.4459 ±
	342)	0.0026 ^A	0.0943	0.1261	0.2917	0.0018	0.1487	0.0683	0.2313	0.1741	0.1581	0.0229	0.1536 ^b
	CT(366–	0.1876 ±	14.0312±	19.1531 ±	57.3551 ±	0.1692 ±	6.1427±	3.6574 ±	24.9351 ±	67.9939 ±	30.3340 ±	2.2877 ±	27.4913 ±
	454)	0.0025 ^{Bb}	0.0863	0.1157	0.2685	0.0017	0.1386	0.0634	0.2172	0.1593	0.1453	0.0211	0.1430 ^b
	Ρ	0.0014**	0.7903	0.1021	0.2644	0.2229	0.5851	0.9227	0.1358	0.0673	0.0831	0.1542	0.0260*
g.	CC(276–	0.1934 ±	14.0356 ±	19.0648±	57.3541 ±	0.1703±	6.2878±	3.6822±	25.2621 ±	67.9820 ±	30.4044 ±	2.2781 ±	27.4462 ±
146737946C >	353)	0.0026 ^a	0.0944	0.1269	0.2931	0.0018	0.1493	0.0677	0.2307	0.1743	0.1588	0.0231	0.1556 ^b

2.
Ę
5
Ğ
C
5
1
\geq
S
J
S
Š
6
Ŭ
_
·=
Ę
<u>s</u>
0
Т
۵.
Š
ē
.≘
\cup
~
·=
S
÷
5
÷
σ
ŏ
a X
tty a
fatty a
k fatty a
ilk fatty a
nilk fatty a
milk fatty a
d milk fatty a
ind milk fatty a
and milk fatty a
⁵ s and milk fatty a
VPs and milk fatty a
SNPs and milk fatty a
' SNPs and milk fatty a
17 SNPs and milk fatty a
17 SNPs and milk fatty a
In 17 SNPs and milk fatty a
en 17 SNPs and milk fatty a
veen 17 SNPs and milk fatty a
tween 17 SNPs and milk fatty a
etween 17 SNPs and milk fatty a
between 17 SNPs and milk fatty a
n between 17 SNPs and milk fatty a
on between 17 SNPs and milk fatty a
tion between 17 SNPs and milk fatty a
iation between 17 SNPs and milk fatty a
ciation between 17 SNPs and milk fatty a
sociation between 17 SNPs and milk fatty a
ssociation between 17 SNPs and milk fatty a
Association between 17 SNPs and milk fatty a
2 Association between 17 SNPs and milk fatty a
2 Association between 17 SNPs and milk fatty a
le 2 Association between 17 SNPs and milk fatty a
ble 2 Association between 17 SNPs and milk fatty a
able 2 Association between 17 SNPs and milk fatty a

Table 2 Asso	ociation betw	veen 17 SNP	's and milk fa	tty acid traits	in Chinese H	lolstein cows	5 (LSM±SE)	(Continued)					
SNP	Genotype (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
	TT(129-	0.1956±	14.0929±	19.3950±	57.7406 ±	0.1687 ±	6.2543±	3.7333±	24.8679 ±	67.5357 ±	30.7658 ±	2.2291 ±	27.9048 ±
	149)	0.0032 ^A	0.1198	0.1605	0.3642	0.0022	0.1810	0.0830	0.2786	0.2182	0.1999	0.0290	0.1867 ^{Aa}
	CT(372-	0.1872 ±	14.1087 ±	19.0634±	57.2223±	0.1683 ±	6.1445 ±	3.6631 ±	24.8255 ±	68.0108 ±	30.3468 ±	2.2787 ±	27.4151 ±
	460)	0.0025 ^{Bb}	0.0864	0.1159	0.2683	0.0017	0.1379	0.0633	0.2163	0.1592	0.1450	0.0210	0.1428 ^B
	Ρ	0.0015**	0.6954	0.0742	0.3013	0.4732	0.4699	0.6201	0.0533	0.0567	0.0783	0.1645	0.0073**
g.	AA(8-12)	0.2017 ±	13.9011 ±	18.0083 ±	55.7325 ±	0.1754 ±	5.8460 ±	3.6632 ±	24.8286 ±	69.0285 ±	29.7689 ±	2.3942 ±	26.4994 ±
146738055G >		0.0090	0.3614	0.4790	1.0632	0.0077	0.5058	0.2374	0.8041	0.6442	0.5866	0.0853	0.5087 ^a
A	AG(195–	0.1868 ±	14.1406 ±	18.9628±	56.8884 ±	0.1674 ±	6.2627 ±	3.5945 ±	24.4635 ±	68.2252 ±	30.2599 ±	2.2993 ±	27.2869 ±
	237)	0.0029 ^a	0.1041	0.1381	0.3155	0.0020	0.1586	0.0726	0.2501 ^a	0.1883	0.1723	0.0251	0.1638 ^b
	GG(578-	0.1929±	14.1562 ±	19.1422 ±	57.3907 ±	0.1702±	6.1662 ±	3.6781 ±	24.9766 ±	68.0300 ±	30.5244 ±	2.2729 ±	27.5622 ±
	702)	0.0023 ^b	0.0803	0.1083	0.2534	0.0016	0.1317	0.0602	0.2047 ^b	0.1500	0.1358	0.0197	0.1357
	Ρ	0.0149*	0.7729	0.0258*	0.0632	0.2047	0.5865	0.3532	0.0353*	0.1638	0.1078	0.1927	0.0146*
Note: <i>LSM</i> least letters: <i>P</i> < 0.05;	square mean. 5 capital letters: /	6E standard errc P < 0.01) supers	or. P indicates th	ie significances (of the association	n analysis betw e genotypes. Th	/een each SNP ne number in t	and milk fatty the brackets rep	acid traits. <i>P</i> is t presents the nur	he raw value. *: nber of cows for	<i>P</i> < 0.05. **: <i>P</i> < (0.01. Different le ling genotypes	tter (small

one had significant association with SFA/UFA (P = 0.0005). However, no significant association was found with C11:0, C12:0, C13:0, C14:1, C15:0, C16:0, C16:1, C14index and C16index (P > 0.05).

Further, the additive (a), dominant (d), and allele substitution effects (α) of the 17 SNPs on each kind of fatty acid were calculated. Results showed that the 17 SNPs exhibited significant additive, dominant, and allele substitution effects on C6:0, C8:0, C10:0, C14:0, C16:0, C16:1, C17:0, C18:0, C18:1*cis*-9, C18index, C20:0, C14index, C16index, C17index, SFA, UFA, and total index (Table S2; *P* < 0.05). For C11:0, C12:0, C13:0, C14:1 and C15:0, none of significant additive, dominant, and allele substitution effects was found (*P* > 0.05).

Also, association analysis on two haplotype blocks with 24 milk FAs was performed (Table 3). The haplotype block1 was significantly associated with C6:0, C8:0, C10:0, C14:0, C18:0, C20:0, C17index and total index (P < 0.0001-0.0245), and the block 2 was strongly associated with C6:0, C8:0, C10:0, C14:0, C18:0, C17:1, C18:1*cis*-9, C18index, C20:0, C16index, C17index, SFA, UFA and total index (P < 0.0001-0.0498; Table 3). While, no significant association was found for C11:0, C12:0, C13:0, C14:1, C15:0, C16:0, C16:1, C14index and SFA/UFA (P > 0.05).

Prediction of TFBSs changing caused by the SNPs in 5' regulatory region

By performing Genomatix software suite v3.9, it was predicted that that four SNPs in the 5' regulatory region of *AGPAT3* gene, g.146702957G > A, g.146704373A > G, g.146704618A > G and g.146704699G > A altered the binding sites of some transcription factors (Table 4). The allele A of g.146702957G > A created a TFBS for SMAR CA3 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 3) and REX1 (REX1 transcription factor; zinc finger protein 42), respectively, and the allele G created a TFBS for VMYB (v-Myb, variant of AMV v-myb). The alleles A and G of g.146704373A > G created a TFBS for BRACH (Brachyury) and NKX26 (NK2 homeobox 6, Csx2), respectively. The allele G of g.146704618A > G created two TFBSs for ZBED4 (Zinc finger, BED-type containing 4; GC-box binding sites) and SP1 (Stimulating protein 1, ubiquitous zinc finger transcription factor). The allele G of g.146704699G > A created two TFBSs for USF1 (Upstream stimulating factor 1) and ARNT (AhR nuclear translocator homodimers), and the allele A created a TFBS for FOXA1 (Forkhead box protein A1, hepatocyte nuclear factor 3-alpha (HNF-3-alpha)).

Exploring for luciferase activity altered by the SNPs in 5' regulatory region

To validate the TFBS prediction results, the luciferase assay was further performed for the four SNPs (g.146702957G > A,

g.146704373A > G, g.146704618A > G and g.146704699G > A) (Fig. 1b). We observed that the luciferase activities of six constructs containing g.146704373A > G, g.146704618A > G, and g.146704699G > A, were significantly higher than that of the pGL4.14 empty vector (P < 0.0007) and blank control (P < 0.0008), while g.146702957G > A did not (P > 0.05). Further, the luciferase activity of alleles A of g.146704373A > G and g.146704618A > G were significantly higher than that of their alleles G (P = 0.0004; Fig. 1b). The luciferase activity of allele G of g.146704699G > A was higher than that of allele A, while not significant (P > 0.05). These results indicated that the transcriptional activity of the *AGPAT3* gene significantly altered by g.146704373A > G and g.146704618A > G might be the reasons strongly impacted on FAs.

Discussion

This study was a follow-up investigation for our previous GWAS on milk FAs in Chinese Holstein [12]. *AGPAT3* is involved in pathways related to lipid metabolism (ko00561, ko00564 and ko04072). In human, docosapentaenoic acid as the substrate of *AGPAT3* protein transfers a fatty acid in *sn*-2 position of lysophosphatic acid, a step in the phospholipid biosynthesis pathway [19]. Here, we detected that the *AGPAT3* gene mainly impacted the medium-chain milk FAs in dairy cattle.

Mammalian AGPAT catalyzed the acylation of lysophosphatidic acid to form the phosphatidic acid, which was the precursor of all glycerplipids [14]. For the AGPAT families, AGPAT1 had significant association with milk FA CLA [20], and AGPAT6 was strongly associated with C14:0, C16:0, C10:1, C12:1, C14:1 and C16:1 [21]. In our previous GWA studies [12, 13], AGPAT3 gene was identified as a candidate for two milk FAs, C18index and C18:0. In this study, using an independent Chinese Holstein population that was different from the previous GWA studies, we also observed that AGPAT3 showed a significant genetic effect on C18index and C18:0. In addition, our results revealed that the AGPAT3 had strong associations with C6:0, C8:0 and C10:0. Overall, the previous GWASs and this study suggested that AGPAT3 gene had significantly genetic effects on milk FAs.

Sequences-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that affects gene expression and hence heritable phenotypic variation [22, 23]. Eukaryotic regulatory sequences, including enhancers and promoters, are typically between a hundred and several thousand base pairs in length, and can harbor many TFBSs [24]. It is essential to understand the evolution dynamics of transcription factor binding for understanding the evolution of gene regulation [25]. In this study, by prediction, g.146704373A > G changed the bindings of transcription factors (TFs) BRACH and NKX26, and g.146704618A > **Table 3** Association between haplotype blocks in AGPAT3 and milk fatty acid traits in Chinese Holstein cows (LSM \pm SE)

					,								
Haplotype block	Haplotype combination (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
Block 1	H1H1(121–130)	0.3692 ± 0.0166 ^A	0.8989 ± 0.0140 ^{ACa}	2.7932 ± 0.0413 ^a	0.0579 ± 0.0041	2.9643 ± 0.0538	0.1020 ± 0.0043	10.1573 ± 0.0917	0.6359 ± 0.0253	0.9978 ± 0.0175	34.9164 ± 0.2400	1.3602 ± 0.0336	0.5739 ± 0.0044
	H1H2(218-240)	0.4422± 0.0142 ⁸	0.8923 ± 0.0122 ^{Aa}	2.7610± 0.0367 ^A	0.0569 ± 0.0038	2.9761 ± 0.0470	0.0983 ± 0.0035	10.2724 ± 0.0804	0.6296 ± 0.0213	0.9938 ± 0.0149	34.8598± 0.2082	1.3269 ± 0.0292	0.5767 ± 0.0037
	H1H3(191-204)	0.5563 ± 0.0146 ^C	1.0162± 0.0128 ^{Bb}	2.9065± 0.0373 ^{Bb}	0.0596 ± 0.0039	3.0334 ± 0.0487	0.1005± 0.0037	10.3997 ± 0.0839ª	0.6786 ± 0.0225	1.0068 ± 0.0153	34.7483 ± 0.2175	1.3176 ± 0.0303	0.5656 ± 0.0039
	H2H2(98–103)	0.4381 ± 0.0175 ⁸	0.9044 ± 0.0152 ^{ACDac}	2.8120± 0.0436	0.0594 ± 0.0043	2.9978± 0.0575	0.0987 ± 0.0046	10.3001 ± 0.0986	0.6575 ± 0.0274	0.9853 ± 0.0190	34.7264± 0.2591	1.2820 ± 0.0363	0.5686 ± 0.0048
	H2H3(136–150)	0.4610± 0.0157 ^B	0.9441 ± 0.0134 ^{CDcd}	2.7551 ± 0.0400 ^A	0.0575 ± 0.0040	2.9299± 0.0521	0.0956± 0.0041	10.1961 ± 0.0869	0.6483 ± 0.0243	0.9835 ± 0.0166	35.0655 ± 0.2324	1.3081 ± 0.0326	0.5694 ± 0.0042
	H3H3(66–72)	0.5532± 0.0206 ^C	0.9642 ± 0.0177 ^{BDd}	2.8116± 0.0513	0.0597 ± 0.0048	3.0030± 0.0657	0.0978± 0.0056	10.0632 ± 0.1132 ^b	0.6629 ± 0.0329	0.9895 ± 0.0227	34.8421 ± 0.3116	1.3749 ± 0.0428	0.5689 ± 0.0056
	Ρ	<.0001**	<.0001**	0.0001**	0.9269	0.4138	0.8544	0.0105*	0.3696	0.8195	0.8036	0.3084	0.0962
Block 2	H1H2(126–139)	0.5694 ± 0.0167 ^{Aa}	0.9932 ± 0.0145 ^{Aa}	2.8297 ± 0.0425 ^a	0.0580 ± 0.0042	3.0485 ± 0.0549	0.0962 ± 0.0043	10.1137 ± 0.0946	0.6361 ± 0.0253	0.9918± 0.0176	34.9810± 0.2481	1.3447 ± 0.0344	0.5703 ± 0.0045
	H1H3(56–62)	0.6103± 0.0213 ^{Da}	1.0604 ± 0.0180 ⁸	2.8139± 0.0519	0.0575 ± 0.0050	2.9637 ± 0.0688	0.0984 ± 0.0057	9.9868 ± 0.1182	0.6793 ± 0.0335	0.9893 ± 0.0231	34.7801 ± 0.3163	1.3754 ± 0.0439	0.5671 ± 0.0058
	H1H4(52–55)	0.4357 ± 0.0224 ^{Bbc}	0.9280± 0.0192 ^{ACd}	2.8422± 0.0552	0.0631 ± 0.0053	3.0676± 0.0718	0.1029± 0.0061	10.3528± 0.1232	0.6664 ± 0.0353	1.0077 ± 0.0243	34.2739± 0.3353	1.4103 ± 0.0465	0.5652 ± 0.0062
	H2H2(138-149)	0.3787 ± 0.0166 ^{Cbe}	0.8735± 0.0140 ^{Cde}	2.7289± 0.0417	0.0579 ± 0.0042	2.9456 ± 0.0546	0.0967 ± 0.0042	10.0997 ± 0.0927	0.6586 ± 0.0250	0.9760 ± 0.0171	34.7218± 0.2397	1.3455 ± 0.0335	0.5744 ± 0.0043
	H2H3(95–102)	0.5078± 0.0181 ^{Ac}	0.8930± 0.0155 ^{Cbd}	2.6966 ± 0.0455	0.0611 ± 0.0045	2.9215 ± 0.0594	0.0950 ± 0.0048	10.0970± 0.1008	0.6550 ± 0.0283	0.9821 ± 0.0192	35.2877 ± 0.2714	1.3358 ± 0.0376	0.5593 ± 0.0049
	H2H4(96-107)	0.4629± 0.0187 ^{Fc}	0.8165± 0.0155 ^{Dc}	2.6801 ± 0.0452 ^b	0.0580 ± 0.0045	2.9780 ± 0.0594	0.1005 ± 0.0048	10.3642 ± 0.1024	0.6403 ± 0.0284	0.9990 ± 0.0193	34.9866± 0.2709	1.3292 ± 0.0373	0.5769 ± 0.0048
	H2H5(63–68)	0.3384 ± 0.0204 ^{Ede}	0.8526± 0.0179 ^{Cbce}	2.7312± 0.0510	0.0575 ± 0.0049	2.9783 ± 0.0671	0.0982 ± 0.0056	10.0688 ± 0.1129	0.6521 ± 0.0319	0.9807 ± 0.0223	34.6563 ± 0.3081	1.4043 ± 0.0426	0.5783 ± 0.0056
	Ρ	<.0001**	<.0001**	0.0013**	0.8887	0.2555	0.9225	0.0127*	0.9124	0.8845	0.1205	0.4760	0.0193*
Haplotype block	Haplotype combination (No.)	C17:1, %	C18:0, %	C18:1 <i>cis-9,</i> %	C18index, %	C20:0, %	C14index, %	C1 6index, %	C17index, %	SFA, %	UFA, %	SFA/UFA	Total index, %
Block 1	H1H1(105–130)	0.1992 ± 0.0034	14.1901 ± 0.1259	19.3463 ± 0.1683	57.4699± 0.3816	0.1 <i>7</i> 91 ± 0.0025 ^{Aad}	6.0996 ± 0.1885	3.7792 ± 0.0860	25.0181 ± 0.2938	67.7674 ± 0.2297	30.6829± 0.2089	2.2565 ± 0.0304	27.6878 ± 0.1931 ^a
	H1H2(193–241)	0.1904 ± 0.0029	14.3563 ± 0.1050 ^a	19.1954 ± 0.1414	56.9474 ± 0.3225	0.1710± 0.0020 ^{ABc}	5.9684 ± 0.1634	3.6878 ± 0.0747	24.6437 ± 0.2483	67.9734 ± 0.1925	30.4159± 0.1766	2.2675 ± 0.0255	27.5081 ± 0.1649
	H1H3(167–204)	0.1926± 0.0030	13.9560 ± 0.1103 ^b	19.0385 ± 0.1501	57.3701 ± 0.3377	0.1635 <u>+</u> 0.0022 ^{Bb}	6.3161 ± 0.1697	3.6750 ± 0.0774	24.9275 ± 0.2620	68.0604 ± 0.2014	30.1895 ± 0.1868	2.2838 ± 0.0269	27.4224 ± 0.1743
	H2H2(93–103)	0.1912± 0.0036	14.0036± 0.1391	19.2225 ± 0.1833	57.5431 ± 0.4143	0.1 <i>7</i> 31 ± 0.0025 ^{Aac}	6.1465 ± 0.2072	3.5740 ± 0.0928	24.2275 ± 0.3182ª	67.9786 ± 0.2486	30.3912± 0.2271	2.2608 ± 0.0330	27.6407 ± 0.2079

D.
~
Å
2
÷
ĩ
<i>.</i> 0
Q
\sim
$\widehat{\mathbf{m}}$
5
1
τı
\geq
5
\sim
S
2
O.
0
\Box
<u>.</u>
Ť
T
(1)
Š
é
.⊆
Ē
U
č
.⊑
10
Ľ.
σ
Ţ
-
.8
ğ
10
\geq
Ę
Ð
-
ŧ
F
<u> </u>
σ
Ē
σ
\sim
5
A
PA
GPA-
AGPA
n AGPA
in AGPA
s in AGPA
cks in AGPA
ocks in AGPA
locks in AGPA
blocks in AGPA
e blocks in AGPA
pe blocks in AGPA
sype blocks in AGPA
otype blocks in AGPA
lotype blocks in AGPA
aplotype blocks in AGPA
naplotype blocks in AGPA
haplotype blocks in AGPA
in haplotype blocks in AGPA
en haplotype blocks in AGPA
veen haplotype blocks in AGPA
ween haplotype blocks in AGPA
etween haplotype blocks in AGPA
between haplotype blocks in AGPA
between haplotype blocks in AGPA
in between haplotype blocks in AGPA
ion between haplotype blocks in AGPA
ation between haplotype blocks in AGPA
ciation between haplotype blocks in AGPA
sciation between haplotype blocks in AGPA
sociation between haplotype blocks in AGPA
ssociation between haplotype blocks in AGPA
Association between haplotype blocks in AGPA
3 Association between haplotype blocks in AGPA
3 Association between haplotype blocks in AGPA
le 3 Association between haplotype blocks in AGPA

Table 3 A	ssociation between h	aplotype bl	ocks in AGPAT	3 and milk fa	tty acid trait	s in Chinese	Holstein cc	ws (LSM±9	SE) (Continue	d)			
Haplotype block	Haplotype combination (No.)	C6:0, %	C8:0, %	C10:0, %	C11:0, %	C12:0, %	C13:0, %	C14:0, %	C14:1, %	C15:0, %	C16:0, %	C16:1, %	C17:0, %
	H2H3(119–150)	0.1922 ± 0.0032	14.2354± 0.1206	18.8881 ± 0.1604	56.5368 ± 0.3665	0.1697 ± 0.0023 ^{Abc}	6.0705 ± 0.1814	3.6158± 0.0830	24.3598 ± 0.2842 ^a	68.2035 ± 0.2194	30.1933 ± 0.1991	2.2977 ± 0.0289	27.0443 ± 0.1860 ^b
	H3H3(61–72)	0.2002 ± 0.0043	13.8767 ± 0.1663	19.1521± 0.2201	57.8332 ± 0.4902	0.1669 ± 0.0031 ^{Bbc}	6.3488± 0.2396	3.8032 ± 0.1081	25.6261 ± 0.3649 ^b	67.7284 ± 0.2962	30.6459 ± 0.2693	2.2496 ± 0.0391	27.5612 ± 0.2436
	Ρ	0.0513	0.0051**	0.214	0.0649	<.0001**	0.3560	0.2434	0.0053**	0.5462	0.1757	0.7634	0.0245*
Block 2	H1H2(117–139)	0.1873 ± 0.0034 ^A	14.1418± 0.1267	19.0344 ± 0.1692	57.4628± 0.3893	0.1705 ± 0.0024	6.1665 ± 0.1940	3.6796 ± 0.0878	24.8359± 0.2983ª	67.9941 ± 0.2332	30.3523 ± 0.2134	2.2848 ± 0.0307	27.5466 ± 0.1948
	H1H3(59–62)	0.1908 ± 0.0043	14.0962 ± 0.1695	19.0365 ± 0.2254	57.1552± 0.5004	0.1698 ± 0.0030	6.6035 ± 0.2487	3.7758± 0.1121	25.4165 ± 0.3779	67.9988 ± 0.3013	30.2962 ± 0.2735	2.2858 ± 0.0404	27.5735 ± 0.2497
	H1H4(44-55)	0.1991 ± 0.0046	13.7531 ± 0.1790	19.3446± 0.2403	58.2375 ± 0.5405	0.1 <i>77</i> 1 ± 0.0035 ^A	6.2159± 0.2621	3.9414± 0.1180	25.5598 ± 0.4005	67.3613 ± 0.3257	30.8744 ± 0.2977	2.2085 ± 0.0432	27.8206 ± 0.2639
	H2H2(128–149)	0.1973 ± 0.0034	14.1252 ± 0.1253	19.4270± 0.166 ^a	57.7791 ± 0.3817	0.1679 ± 0.0024	6.2908± 0.1912	3.6936 ± 0.0856	25.0985 ± 0.2912	67.4990 ± 0.2285	30.7484 ± 0.2092ª	2.2254 ± 0.0299	27.8762 ± 0.1924 ^A
	H2H3(80-102)	0.1877 ± 0.0037 ^A	14.0980± 0.1432	18.8617± 0.1897	56.6882 ± 0.4257	0.1714 ± 0.0028	6.3426± 0.2113	3.6030± 0.0958	24.7605 ± 0.3257 ^a	68.2658 ± 0.2556	29.8952 ± 0.2352 ^b	2.3174 ± 0.0344	27.0508 ± 0.2145 ^B
	H2H4(88-107)	0.1877 ± 0.0038ª	14.3357 ± 0.1411	18.7635 ± 0.1887 ^b	56.6694 ± 0.4235	0.1622 ± 0.0028 ^B	6.0775 ± 0.2131	3.6211 ± 0.0957	24.6392 ± 0.3234ª	68.1996 ± 0.2544	30.0572 ± 0.2341	2.3011 ± 0.0339	27.0983± 0.2132 ^{Ca}
	H2H5(50-69)	0.2051 ± 0.0042 ^{Bb}	14.3662 ± 0.1625	19.5612 ± 0.2164 ^a	57.5823 ± 0.4896	0.1644 ± 0.0033	6.1397 ± 0.2402	3.8763 ± 0.1080	25.9925 ± 0.368 ^b	67.4171 ± 0.2947	30.8806 ± 0.2665 ^a	2.2230 ± 0.0391	28.0083 ± 0.2341 ^{ACb}
	Ρ	<.0001 **	0.0798	0.0036**	0.0345*	0.0020**	0.5789	0.0498*	0.0075**	0.0096**	0.0015**	0.0574	0.0001**
Note: <i>LSM</i> lea (small letters: haplotype cou	sst square mean. SF stand P < 0.05; capital letters: P mbination	ard error. <i>P</i> inc < 0.01) supers	licates the signific cripts indicate sig	ances of the as nificant differen	sociation analy ces among the	sis between th	e haplotype bl nbinations. Th	lock and milk f e number in th	atty acid traits. ne brackets repr	P is the raw va esents the nur	alue. *: <i>P</i> < 0.05. mber of cows f	. **: P < 0.01. Di or the corresp	fferent letter onding

SNP	Sequence	Ttranscription factor	Name
g.146702957G > A	TCCCTGTGCC G TTTCCAC TGA	VMYB	v-Myb, variant of AMV v-myb
	TCCCTGTGCC A TTTCCAC TGA	SMARCA3	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 3
		REX1	REX1 transcription factor; zinc finger protein 42
g.146704373A > G	CACGGGAAGTA A GGTGT GCAGT	BRACH	Brachyury
	CACGGGAAGTG G GTGTGC AGT	NKX26	NK2 homeobox 6, Csx2
g.146704618A > G	CTCTTCCACC A CCCTGGA CAG		
	CTCTTCCACC G CCCTGGA CAG	ZBED4	Zinc finger, BED-type containing 4; GC-box binding sites
		SP1	Stimulating protein 1, ubiquitous zinc finger transcription factor
g.146704699G >	AATGGGAAAC G TGACAGG	USF1	Upstream stimulating factor 1
A	ATT	ARNT	AhR nuclear translocator homodimers
	AATGGGAAAC A TGACAGG ATT	FOXA1	Forkhead box protein A1, hepatocyte nuclear factor 3-alpha (HNF-3-alpha)

Table 4 Changes of transcription factor binding site (TFBS) caused by the SNP in the 5'untranslated (UTR) and flanking regions of *AGPAT3*

Note: The SNPs in sequences are highlighted in bold

G altered the bindings of TFs ZBED4 and SP1. Further, we used the luciferase assay to verify that the alleles A of g.146704373A > G and g.146704618A > G strongly increased the transcription activity of the AGPAT3 gene than the alleles G. Previous studies showed that BRACH as a regulatory factor directly activated downstream mesoderm-specific genes to exert its mesoderminducing effects [26], and NKX26 restrained the transcription activity of Cx40 through the F151L missense mutation to impact the heart development [27]. ZBED4 could act as a co-repressor of nuclear hormone receptors (NHRs) by its LXXLL motifys in cones [28]. Through interfering with the recruitment of SP1 to ZNF132 promoter region, methylation of SP1-binding site can inhibit ZNF132 transcriptional expression to impact the tumor in the development of esophageal squamous cell carcinoma [29]. These reports have indicated that the TFs BRACH, NKX26, ZBED4 and SP1 could activate or repress the expression of their target genes. Based on our association analysis, the cows with the AA genotypes of g.146704373A > G and g.146704618A > G of AGPAT3, yielded significantly lower contents of C6:0 and C8:0 than those with GG genotypes. According to above, we deduced that the BRACH as a TF might activate AGPAT3 gene transcription activity by binding to the allele A of g.146704373A > G thereby reducing the contents of C6:0 and C8:0, while, the transcription factors NKX26, ZBED4 and SP1 might have the contrary effects.

Nowadays, genomic selection is the main implication for dairy cattle breeding, where the genomic chips are used. Among the SNP markers in these chips, most of them were collected from the current SNP database and almost evenly distributed across the whole genome. Hence, g.146704373A > G and g.146704618A > G of *AGPAT3* as the potentially causal mutations could be put into the SNP chip instead of used in marker selection to increase selection efficiency in some specific dairy cattle populations to improve the contents of milk FAs.

Conclusion

In conclusion, through a post-GWAS approach, our study firstly indicated there were significant genetic associations between the *AGPAT3* gene and milk FAs in dairy cattle. Further, we found that two SNPs in 5' regulatory region (g.146704373A > G and g.146704618A > G) changed the transcriptional activity of *AGPAT3* implying their potential causal function. These findings provided important molecular information for dairy cattle breeding.

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s40104-020-00540-4.

Additional file 1: Table S1. PCR primers information of *AGPAT3* gene **Additional file 2: Table S2.** Additive (a), dominant (d) and allele substitution (α) effects of 17 SNPs on milk fatty acid traits of *AGPAT3* gene in Chinese Holstein cows

Abbreviations

a: Additive; AGPAT: 1-Acylglycerol-sn-glycero 3-phosphate acyltransferase; AGPAT3: 1-Acylglycerol-3-phosphate O-acyltransferase 3; ARNT: AhR nuclear translocator homodimers; BRACH: Brachyury; d: Dominant; FA: Fatty acid; FOXA1: Forkhead box protein A1, hepatocyte nuclear factor 3-alpha (HNF-3alpha); GWAS: Genome-wide association study; HEK: Human embryonic kidney; LD: Linkage disequilibrium; NKX26: NK2 homeobox 6, Csx2; PCR: Polymerase chain reaction; REX1: REX1 transcription factor; zinc finger protein 42; SFA: Saturated fatty acids; SMARCA3: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 3; SNP: Single nucleotide polymorphism; SP1: Stimulating protein 1, ubiquitous zinc finger transcription factor; TFBS: Transcription factor binding site; UFA: Unsaturated fatty acid; USF1: Upstream stimulating factor 1; UTR: Untranslated region; VMYB: v-Myb, variant of AMV v-myb; ZBED4: Zinc finger, BED-type containing 4, GC-box binding sites; a: Substitution

Acknowledgements

We appreciate Beijing Dairy Cattle Center and Beijing Sanyuanlvhe Dairy Farming Center for providing the milk, blood, and semen samples of Chinese Holstein.

Authors' contributions

DS and YY conceived and designed the experiments, LL prepared the DNA samples for SNP identification and genotyping with the help of XW, ZM, XL, YL, and FZ, XL measured the phenotypes of milk fatty acids, LS and XW analyzed the data, and LS, BH and DS prepared the manuscript. All authors read and approved the final manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (31872330, 31802041), Beijing Science and Technology Program (20200105, D171100002417001), earmarked fund for Modern Agroindustry Technology Research System (CARS-36), and the Program for Changjiang Scholar and Innovation Research Team in University (IRT_15R62).

Availability of data and materials

All relevant data are available within the article and its supplementary information.

Ethics approval and consent to participate

All protocols for collection of the samples of experimental individuals and phenotypic observations were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) at China Agricultural University (Permit Number: DK996). Milk, blood and semen samples were collected specifically for this study following standard procedures with the full agreement of the Beijing Sanyuanlvhe Dairy Farming Center who owned the Holstein cows and bulls, respectively.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China. ²Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. ³Beijing General Station of Animal Husbandry, Beijing 100101, China. ⁴Beijing Dairy Cattle Center, Beijing 100192, China.

Received: 25 June 2020 Accepted: 14 December 2020 Published online: 01 February 2021

References

- Staniewski B, Kielczewska K, Smoczynski M, Baranowska M, Czerniewicz M, Brandt W. Effect of high pressures on the composition of milk fat triacylglycerols. Milchwissenschaft. 2012;67(1):18–21.
- Delafuente MA, Fontecha J, Juarez M. Fatty-acid composition of the triglyceride and free fatty-acid fractions in different cows-milk, ewes-milk and goats-milk cheeses. Z Lebensm Unters For. 1993;196(2):155–8.

- Krag K, Poulsen NA, Larsen MK, Larsen LB, Janss LL, Buitenhuis B. Genetic parameters for milk fatty acids in Danish Holstein cattle based on SNP markers using a Bayesian approach. BMC Genet. 2013;14:79.
- Petrini J, lung LH, Rodriguez MA, Salvian M, Pertille F, Rovadoscki GA, et al. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions. J Anim Breed Genet. 2016;133(5):384–95.
- Narayana SG, Schenkel FS, Fleming A, Koeck A, Malchiodi F, Jamrozik J, et al. Genetic analysis of groups of mid-infrared predicted fatty acids in milk. J Dairy Sci. 2017;100(6):4731–44.
- Stoop WM, Schennink A, Visker MH, Mullaart E, van Arendonk JA, Bovenhuis H. Genome-wide scan for bovine milk-fat composition. I. Quantitative trait loci for short- and medium-chain fatty acids. J Dairy Sci. 2009;92(9):4664–75.
- Schennink A, Stoop WM, Visker MH, van der Poel JJ, Bovenhuis H, van Arendonk JA. Short communication: Genome-wide scan for bovine milk-fat composition. II. Quantitative trait loci for long-chain fatty acids. J Dairy Sci. 2009;92(9):4676–82.
- Chen Z, Yao Y, Ma P, Wang Q, Pan Y. Haplotype-based genome-wide association study identifies loci and candidate genes for milk yield in Holsteins. PLoS One. 2018;13(2):e0192695.
- Palombo V, Milanesi M, Sgorlon S, Capomaccio S, Mele M, Nicolazzi E, et al. Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. J Dairy Sci. 2018.
- Knutsen TM, Olsen HG, Tafintseva V, Svendsen M, Kohler A, Kent MP, et al. Unravelling genetic variation underlying de novo-synthesis of bovine milk fatty acids. Sci Rep. 2018;8(1):2179.
- Yue SJ, Zhao YQ, Gu XR, Yin B, Jiang YL, Wang ZH, et al. A genome-wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle. Anim Genet. 2017;48(6):677–81.
- Li C, Sun D, Zhang S, Wang S, Wu X, Zhang Q, et al. Genome wide association study identifies 20. novel promising genes associated with milk fatty acid traits in Chinese Holstein. Plos One. 2014;9(5):e96186.
- Li X, Buitenhuis AJ, Lund MS, Li C, Sun D, Zhang Q, et al. Joint genomewide association study for milk fatty acid traits in Chinese and Danish Holstein populations. J Dairy Sci. 2015;98(11):8152–63.
- Lu B, Jiang YJ, Zhou Y, Xu FY, Hatch GM, Choy PC. Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARalpha in murine heart. Biochem J. 2005;385(Pt 2):469–77.
- Shi L, Liu L, Ma Z, Lv X, Li C, Xu L, et al. Identification of genetic associations of ECHS1 gene with milk fatty acid traits in dairy cattle. Anim Genet. 2019; 50(5):430–8.
- Kelsey JA, Corl BA, Collier RJ, Bauman DE. The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J Dairy Sci. 2003;86(8):2588–97.
- 17. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 1996: Ed. 4 xv + 464 pp.
- Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, et al. Matlnspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005;21(13):2933–42.
- Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a metaanalysis of genome-wide association studies from the CHARGE consortium. PLoS Genet. 2011;7(7):e1002193.
- Gebreyesus G, Buitenhuis AJ, Poulsen NA, Visker M, Zhang Q, van Valenberg HJF, et al. Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. BMC Genomics. 2019;20(1):178.
- Bouwman AC, Bovenhuis H, Visker MH, van Arendonk JA. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet. 2011;12:43.
- 22. Tugrul M, Paixao T, Barton NH, Tkacik G. Dynamics of transcription factor binding site evolution. PLoS Genet. 2015;11(11):e1005639.
- 23. Talebzadeh M, Zare-Mirakabad F. Transcription factor binding sites prediction based on modified. nucleosomes. Plos One. 2014;9(2):e89226.
- Yao P, Lin P, Gokoolparsadh A, Assareh A, Thang MW, Voineagu I. Coexpression networks identify brain region-specific enhancer RNAs in the human brain. Nat Neurosci. 2015;18(8):1168–74.
- Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science. 2010;328(5981):1036–40.

- Chen M, Wu Y, Zhang H, Li S, Zhou J, Shen J. The roles of embryonic transcription factor BRACHYURY in tumorigenesis and progression. Front Oncol. 2020;10:961.
- Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA, et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet. 2005;14(5):585–93.
- Farber DB, Theendakara VP, Akhmedov NB, Saghizadeh M. ZBED4, a novel retinal protein expressed in cones and Müller cells. Adv Exp Med Biol. 2010; 664:79–87.
- Jiang D, He ZL, Wang CJ, Zhou YH, Li F, Pu WL, et al. Epigenetic silencing of ZNF132 mediated by methylation-sensitive Sp1 binding promotes cancer progression in esophageal squamous cell carcinoma. Cell Death Dis. 2018; 10(1):1.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- · thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

