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Abstract

The concept of foetal programming (FP) originated from human epidemiological studies, where foetal life nutrition
was linked to health and disease status later in life. Since the proposal of this phenomenon, it has been evaluated
in various animal models to gain further insights into the mechanisms underlying the foetal origins of health and
disease in humans. In FP research, the sheep has been quite extensively used as a model for humans. In this paper
we will review findings mainly from our Copenhagen sheep model, on the implications of late gestation malnutrition
for growth, development, and metabolic and endocrine functions later in life, and discuss how these implications may
depend on the diet fed to the animal in early postnatal life. Our results have indicated that negative implications of
foetal malnutrition, both as a result of overnutrition and, particularly, late gestation undernutrition, can impair a wide
range of endocrine functions regulating growth and presumably also reproductive traits. These implications are not
readily observable early in postnatal life, but are increasingly manifested as the animal approaches adulthood. No
intervention or cure is known that can reverse this programming in postnatal life. Our findings suggest that close to
normal growth and slaughter results can be obtained at least until puberty in animals which have undergone adverse
programming in foetal life, but manifestation of programming effects becomes increasingly evident in adult animals.
Due to the risk of transfer of the adverse programming effects to future generations, it is therefore recommended that
animals that are suspected to have undergone adverse FP are not used for reproduction. Unfortunately, no reliable
biomarkers have as yet been identified that allow accurate identification of adversely programmed offspring at birth,
except for very low or high birth weights, and, in pigs, characteristic changes in head shape (dolphin head). Future
efforts should be therefore dedicated to identify reliable biomarkers and evaluate their effectiveness for alleviation/
reversal of the adverse programming in postnatal life. Our sheep studies have shown that the adverse impacts of an
extreme, high-fat diet in early postnatal life, but not prenatal undernutrition, can be largely reversed by dietary correction
later in life. Thus, birth (at term) appears to be a critical set point for permanent programming in animals born precocial,
such as sheep. Appropriate attention to the nutrition of the late pregnant dam should therefore be a priority in animal
production systems.
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Background
The term ‘foetal metabolic programming’ was defined in
the early 1990s as a phenomenon linking long-term ad-
verse health consequences in animal species with ad-
verse nutritional exposures in utero [1, 2]. In the past,
foetal programming (FP) and its long-term impacts have
been evaluated particularly from a human health and
disease perspective [3, 4], and such studies have revealed
that FP has implications for a wide range of body func-
tions, which are also key determinants of animal prod-
uctivity. However, knowledge about the potential long-
term implications of FP for animal productivity is still
scare. Such knowledge is needed in order to assign the
best management strategies (postnatal feeding, culling,
etc.) to minimize implications of adverse FP for animal
productivity and avoid possible trans-generational trans-
fer of undesirable FP outcomes. In this review we will
primarily focus on what has been found in sheep, where
the long-term implications of foetal life malnutrition for
development and metabolic and endocrine functions
later in life have been extensively studied. Furthermore,
we will also evaluate to what extent the diet fed in post-
natal life can influence the phenotypic manifestation of
the prenatal FP. In this regards, observations from other
species will only be included where appropriate.

Animal experimental approaches to the study of
foetal programming
In the past, early nutritional programming has mostly
been investigated in rodent models with a focus on the
long-term implications for health and disease risk in
humans. However, FP is one of the rare areas of research
where sheep has also been used quite extensively as a
model for humans [5–10] due to the similarities in the
foetal developmental trajectory and physiological matur-
ity at birth. Pig is another farm animal commonly used
as a model for humans studies regarding FP [11], but
the pig is born less physiologically mature than humans
and ruminant offspring. Less frequently, non-human pri-
mates [12] have been used.
We developed the Copenhagen sheep model [9, 10] to

be able to study the long-term impacts of foetal over-
and undernutrition in late gestation, and further to
study how postnatal manifestations of FP are affected by
the diet received in early postnatal life. In the studies
based on this model, twin-pregnant ewes were exposed
to adequate nutrition (NORM; 100% of Danish daily en-
ergy and protein requirements), undernutrition (LOW;
50% of NORM for energy and protein requirements) or
overnutrition (HIGH; 150% of energy and 110% of pro-
tein requirements) during the last 6 wk of pregnancy
(term ~147 d). When the twin lambs were born, they re-
ceived colostrum within 3 h of birth, and suckled their
dams at will for the first 3 days after parturition.

Thereafter, the dam was removed and the lambs artificially
reared until 6 mo of age (after puberty) on two different
diets: one lamb from each twin pair received a moderate,
conventional diet (CONV, consisting of good quality hay
sufficient to achieve moderate growth rates of 225 g/d
with a milk replacer until 8 wk of age), whereas the other
lamb received an energy dense, high-starch-high-fat diet
(HCHF, consisting of rolled maize and a dairy cream-milk
replacer mix (1:1) fed ad libitum up to a maximum daily
intake of 1 kg and 2.5 kg, respectively) (Fig. 1). From 6 mo
of age until adulthood at 2–2.5 yr of age, all sheep were
fed the same moderate grass/hay based diet. To minimize
the potential paternal impacts in regards to foetal
programming of maternal nutrition, rams used for mating
the ewes prior to an exposure to prenatal nutritional
treatments were of the same breed and similar ages and
body weights and they were reared under similar manage-
ment conditions. With this experimental design, it was
possible to evaluate whether long-term adverse outcomes
of foetal malnutrition and excessive fat deposition in early
postnatal life can be reversed by nutritional intervention
later in life. Details of the type of feeds used and the nutri-
tional composition of the experimental diets are shown in
Table 1.
It should be noted that we characterized the long-term

consequences of pre- and postnatal nutrition mismatch
scenarios in a ruminant animal species without disrupting
rumen fermentation or compromising animal health. Nu-
tritional manipulations in our experiments were done dur-
ing the late gestation period (third trimester), which is the
period of extensive quantitative foetal growth [13] where
many endocrine organs and tissues are matured, including
adipose tissues [14]. Although nutritional insults during
all stages of gestation can influence body functions of the
offspring later in life [5, 15, 16], late gestation is the time
window, where FP is most likely to occur in precocial farm
animal species given birth to multiple offspring, such as
sheep, due to the dramatic rise in nutrient requirements
for the foetuses in late gestation [13, 17]. Although our
studies were designed from a human health perspective,
the results obtained allow us to evaluate how program-
ming outcomes may affect both animal growth and meta-
bolic and endocrine functions of importance for animal
productivity, including the timing of manifestations. Such
knowledge can help to refine nutritional strategies applied
in livestock production [18].

Impacts of maternal malnutrition on postnatal
growth and organ and tissue development and
function in growing animals
Growth characteristics
Historically, birth weight has been used as a marker to
identify individuals at risk of having undergone adverse
FP [19]. Birth weight is in itself a poor indicator of
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nutritional programming, since it provides little informa-
tion about body composition, adiposity and potentially
altered body functions. Moreover, nutritional insults
interfering with foetal growth during the earlier stages of
gestation may not be reflected in changes in birth weight
if catch-up growth occurs during later stages of gestation
[6, 20]. However, it has been shown in several studies
that undernutrition in late gestation can result in ani-
mals being born small for gestational age. In sheep, birth
weights have been reduced in different experiments by
10–18% under controlled conditions, when dams were

fed only 50–70% of their daily energy requirements dur-
ing late gestation (see e.g. [9, 21]), and in goats kid birth
weight was reduced by ~10% when dams were exposed
to poor grazing conditions during the last 4 wk pre-
partum [22]. Lower birth weight has in different studies
been associated with reduced survival rate [23], poorer
growth rate during the suckling period and 24% lower
weaning weight at 14 wk of age in sheep [21]. These
findings may partly be explained by poorer mammary
development of dams malnourished in late gestation
[24], leading to a reduction in colostrum and early

Table 1 Different types of experimental feeds and their chemical composition and energy content

Feeds DM, % Ash, % of DM aNDF, % of DM ADF, % of DM ADL, % of DM CP, % of DM Cfat, % of DM DE, MJ/ kg DM

Sheep diet during late gestation

Hay 91.4 5.6 47.7 27 3.1 20.8 4.8 13.7

Barley 89.0 2.3 14 6 1.1 12.5 3.1 17.1

Concentrate 87.7 7.7 25.8 18 2.8 15.3 3.8 12.8

Lamb diet during early postnatal life until puberty

Hay 93.1 6.8 50.4 32.3 3.5 19.1 3.7 13.5

Maize 89.5 0.6 4.1 <5 0.9 8.5 1.9 16.3

Milk powder 95.6 7.1 - - - 22.5 23.6 19.2

Cream 42.9 0.8 - - - 4.3 38.0 30.5

These are the types of feeds used in diets for experimental animals in the Copenhagen sheep model; the table was obtained from Khanal et al., 2014 [10] with
modifications. DM, dry matter; aNDF, amylase-treated neutral detergent fiber; ADF, acid detergent fiber; ADL, acid detergent lignin; CP, crude protein; Cfat, crude
fat; DE, digestible energy

Fig. 1 The experimental design of the Copenhagen sheep model showing different nutritional and dietary interventions during late gestation and
early postnatal life in sheep (obtained from Khanal et al., 2014 [10]). Late gestational nutrition groups: HIGH, fulfilling 150% of Danish requirements for
energy and 110% of requirements for protein; LOW, fulfilling only 50% of requirements for energy and protein; NORM; fulfilling 100% requirements for
energy and protein. Early postnatal (from 3 d after birth until 6 mo of age) nutrition groups: one lamb from each twin pair was allocated to a HCHF
diet (high-starch-high fat consisting of a milk replacer-dairy cream mix supplemented with rolled maize), and the other was fed a CONV (conventional/
moderate, hay-based diet; growth rate of appr. 225 g/d) diet
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lactation milk production [9, 25, 26]. However, in other
studies in sheep where the dietary intake of offspring
was controlled after birth (artificial rearing), the postna-
tal growth appeared to be entirely determined by the
postnatal and not the prenatal level of nutrition [9, 10,
27, 28]. However, postnatal growth does appear to ter-
minate earlier in individuals with a history of late gesta-
tion undernutrition, resulting in smaller adult body size
[27]. In cattle, low birth weight (28.6 vs. 38.3 kg) or slow
growth till weaning led to lowered body (56 or 46 kg
less, respectively) and carcass weights (32 or 40 kg less,
respectively) at slaughter at 30 mo of age [29]. Thus,
proper attention should be given to ewe nutrition in the
late gestational period to ensure not only optimal foetal
growth, but also a desired level of colostrum and milk
production. It may therefore be beneficial to consider
supplementary milk feeding after birth in suckling indi-
viduals which were exposed to prenatal undernourish-
ment to improve their postnatal immunization and
growth performance.

Skeletal muscle development and function
Proper growth of skeletal muscle and lean carcass mass
in slaughter animals are important production traits for
the livestock industry. Muscle fibre formation com-
mences during the embryonic stage and, in animal spe-
cies born precocial, the formation of secondary muscle
fibers is concluded during mid-gestation [30]. Thus, in
sheep, and other animals born precocial, conclusion of
myotube formation and establishment of the final num-
ber of muscle fibres occurs prior to the onset of the
third trimester [14, 31]. In other farm animal species,
myogenesis may occur over a larger part of gestation, for
example in pigs, where muscle fibre hyperplasia is not
concluded until 95 d of the 114-d gestation period [32].
It must be anticipated, therefore, that foetal myofibre
formation in such species may be affected by adverse
nutritional insults during a greater part of the gestation.
In ruminant animals, foetal undernutrition during the
first part of gestation, when myogenesis takes place, has
been shown to reduce the formation and number of sec-
ondary muscle fibres [15, 31]. In lambs exposed to un-
dernutrition from 28 to 78 d of gestation, the reduced
number of total secondary myofibers was reconizable at
8 mo of age [15], and in another study it was shown that
undernutrition from 30 to 70 d of gestation altered
muscle characteristics (fewer fast fibres and more slow
fibres in the longissimus and vastus lateralis muscles) in
new-born lambs [33]. In cows, improving the nutritional
status of pregnant cows (improved pasture conditions)
during mid to mid-late gestation (120–150 through
180–210 d of gestation; term ~280 d) improved carcass
characteristics (tenderness) and also increased live and
hot carcass weight in steers [34].

In contrast, exposure to malnutrition after myofibre
formation has been completed does not appear to have
major implications for muscle development and function
postnatally. Thus, nutrient restriction (to 50% of daily
requirements) between 85 and 115 d of gestation de-
creased muscle weight in lambs without affecting muscle
fibre number [33]. Similarly, in adult sheep, we have not
been able to demonstrate any changes in muscle mass or
expression of markers for metabolic function in muscle
of adult offspring that could be related to a history of
late gestational foetal undernutrition (50% reduction in
maternal energy and protein supply relative to recom-
mendations) [35]. In conclusion, whether gestational
malnutrition will have implications for myogenesis thus
appears to depend on the timing of the nutritional in-
sults relative to the conclusion of myotube formation in
utero. The nutritional programming of skeletal muscle
development prior to the conclusion of myofibre devel-
opment appears to be permanent, whereas malnutrition
in late gestation in precocial animal species does not
have long-term consequences for skeletal muscle
development.

Adipose tissue deposition
In precocial animal species such as sheep, the major part
of foetal adipogenesis and adipose tissue differentiation
takes place during the last part of gestation [36–38].
Thus, if foetal nutrition should have implications for adi-
pose tissue development, it would most likely be during
the late gestation period. This has received much less at-
tention in relation to FP in farm animals than muscle
development, presumably due to the greater economic
importance of the latter.
From studies using our Copenhagen sheep model, we

have earlier reported that both prenatal overnutrition
(150% of energy and 110% of protein requirements) and
undernutrition (50% of energy and protein require-
ments) during late pregnancy led to changes in fat de-
position patterns in adolescent offspring (~6 mo of age)
resulting in a greater preference for deposition in the ab-
dominal (mesenteric or perirenal) rather than subcuta-
neous region when the lambs were fed a high-fat diet in
early postnatal life [9, 10]. This could be ascribed to a re-
duced ability to increase fat deposition in subcutaneous
adipose tissue during fatness development (Fig. 2).
Moreover, in the 6 months old lambs with a history of
late gestation undernourishment, an increased occur-
rence of collagen and non-collagen extracellular matrix,
together with greater numbers of a subpopulation of
very small adipocytes (<40 μm diameter) was observed
in the subcutaneous fat (Fig. 3) [39]. Our recent data
also indicate that altered fat distribution patterns due to
late-gestation under- as well as overnutrition, followed
by exposure to a high-fat diet in early postnatal life are
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associated with markedly increased perirenal adipocyte
hypertrophy (Khanal et al., unpublished data; Fig. 4).
A limited expandability of subcutaneous adipose tissue

may give rise to increased intramuscular fat deposition
during fattening. This would be consistent with findings
in pigs, where low birth weight pigs (1.05 vs. 1.89 kg) had
increased lipid deposition (25%) in semitendinosus muscle
when subcutaneous fat deposition increased, and lean
meat content and fibre numbers (19%) were lowered com-
pared to high-birth weight animals [40]. In contrast, other
findings in sheep have shown that maternal overnutrition
(~50% above maintenance energy requirements) during
late pregnancy increased relative subcutaneous fat depos-
ition and leptin expression in subcutaneous and perirenal
fat in 1 mo old lambs [7]. The reasons for these apparently
conflicting results are not known, but the postnatal diet
could have had an influence.

Impacts of maternal malnutrition on metabolic
and endocrine function in growing animals
Malnutrition during gestation has been linked to sub-
stantial changes in metabolic and endocrine functions
postnatally, and in the following sections implications of
prenatal nutritional for glucose-insulin homeostasis,
hepatic function and other endocrine functions will be
addressed.

Glucose-insulin homeostasis
The glucose-insulin regulatory axis has long been known
to be an important target of foetal programing in humans.
In our Copenhagen sheep model we have shown that this
is also the case in sheep, and that both under- and overnu-
trition in late gestation can change the function of this
axis permanently. The digestive system and intermediary
metabolism of the ruminants differ from the non-
ruminant animals, as ruminants ferment most of the

dietary carbohydrates to short-chain volatile fatty acids
using microbial activity in the rumen leaving only little
glucose available for intestinal absorption [41]. However,
like in other animal species, hormonal regulatory mecha-
nisms for the maintenance of stable blood glucose level
appear to be quite similar in both ruminant and monogas-
tric animals [42, 43]. In our studies, we have performed in
vivo metabolic and endocrine tolerance tests to elucidate
glucose-insulin-axis function in sheep.
Late gestation undernutrition (50% of energy and pro-

tein requirements) decreased peripheral insulin sensitivity
in young lambs, but their ability to clear intravenously ad-
ministered glucose was maintained due to a compensatory
upregulation of insulin secretion [44, 45]. However, upon
exposure to a high-fat diet in early postnatal life, the abil-
ity to clear glucose was reduced, since the high-fat diet in-
terfered with the compensatory upregulation of glucose
secretion from the pancreas [45]. The high-fat diet also
gave rise to very high plasma levels of triglyceride (~2.0 vs.
0.5 mmol/L) in the lambs, and development of pancreatic
fibrosis [45], which to our knowledge has not been re-
ported in ruminant animals previously.
Late gestation overnutrition also affects glucose-

insulin regulation, but in a different way. In our studies,
lambs exposed to overnutrition in late gestation had in-
creased postnatal gluconeogenic ability in response to
intravenous propionate injection [46] and had higher
levels of plasma glucose during 44-h fasting when ex-
posed to an early postnatal high-fat diet [10], which was
not observed in lambs that had been exposed to under-
nutrition in late gestation. The underlying mechanims
are not known.

Hepatic function
The liver is an important organ for integration of meta-
bolic pathways, and studies in sheep have shown that

Fig. 2 Impacts of late gestational over- and undernutrition on fat deposition patterns in adolescent (6 months old) offspring (left panel:
subcutaneous to mesenteric fat ratio; right panel: subcutaneous to perirenal fat ratio) (obtained from Khanal et al. [10]). For HIGH, NORM and
LOW, see legends for Fig. 1
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prenatal over- and undernutrition may have long-term
and differential impacts on hepatic lipid accumulation,
glucose and lactate release, and cholesterol synthesis.
Nutrient restriction (50% of requirements) during early
pregnancy led to increased hepatic lipid accumulation in
obese 1 years old sheep offspring [47], and in 4 months
old lambs born to dams that were obese around the
periconceptional period, expression of genes encoding

for factors involved in hepatic fatty acid oxidation was
increased [48]. The implications for hepatic function in
the offspring later in life were, however, not studied. We
ourselves observed increased plasma cholesterol levels in
prenatally undernourished 6 months old sheep offspring
provided a high-starch-high-fat diet during early postna-
tal life [46], which may be due to upregulated hepatic
cholesterol metabolism. As with glucose metabolism, the

Fig. 3 Morphology of Van Gieson-stained subcutaneous adipose tissue from 6 months old adolescent lambs and 2 years old adult sheep (ob-
tained from Nielsen et al. [39]). Panel A: examples of pictures from the 4 groups of lambs, used to grade cell size (and with negligible collagen infiltra-
tion) showing a larger population of very small cells in the LOW/CONV group (bottom left) relative to the other groups, and extensive hypertrophy in
adipocytes from HCHF lambs (pictures to the right). Panel B: morphological characteristics observed in slides from adult LOW sheep, which was not re-
stricted to a specific early postnatal diet (pictures at the top) with extensive collagen infiltration (grade 4), which was never observed to the same ex-
tent among NORM sheep (max grade assigned = 2). For HIGH, NORM, LOW, CONV, HCHF see legends for Fig. 1
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impacts of an early postnatal high-starch-high-fat diet in
our studies were additive to those of prenatal undernu-
trition with regard to lipid metabolism and hepatic func-
tion. This is because the predisposition of higher plasma
cholesterol levels due to late gestation undernutrition
(4.3 vs. 1.6 mmol/L) was manifested particularly upon
additional exposure to a postnatal high-starch-high-fat
diet in adolescent lambs [46]. Our studies have thus
shown clear indications that late gestation undernutri-
tion impacts on postnatal cholesterol metabolism in
sheep offspring but further investigation into the under-
lying mechanism and its potential long-term implica-
tions for farm animals is warranted in future.

Other endocrine functions
Not only glucose-insulin axis function, but also a num-
ber of other endocrine systems are subject to program-
ming in foetal life, such as the hypothalamic-pituitary-
adrenal (HPA) axis [49], the growth hormone (GH)-in-
sulin-like growth factor 1 (IGF-1) axis [50], leptin
regulation [51] and the hypothalamic-pituitary-thyroid
hormone (TH) axis [52]. We have, however, found that
the impacts of prenatal nutrition on basal plasma levels
and the adaptive responses to fasting in these endocrine
systems became manifested in adulthood only, and were
not evident in lambs at 6 mo of age [53]; this will be ad-
dressed in the following section.

Long-term consequences of early life nutrition in
adult animals
In animal production systems, animals are kept until
adulthood for special production purposes, such as
reproduction and lactation [54]. Much less information
is available regarding the implications of FP in adulthood
in farm animals, probably due to the fact that it is costly
to run such studies for several years. Prevailing evidence
suggests that many of the implications of FP become in-
creasingly manifested as the animal approaches adult-
hood. As already mentioned, low birth weight in lambs
can be compensated for early postnatal catch-up growth

so that normal slaughter weights can be achieved. How-
ever, adult body composition can be altered as demon-
strated by increased adult adiposity and body weight
[55], and there is also, as previously mentioned, evidence
suggesting that linear growth can be terminated earlier,
resulting in smaller adult body size [27]. In our sheep
studies, we did, however, not observe changes in neither
body size nor proportions or weights of major organs or
muscle or adipose tissue mass in adult offspring that had
been exposed to over- or undernutrition in their late
foetal life [56], except for increased adrenal weights [9].
Irrespective of that, abnormal subcutaneous morphology
(more extensive fibrosis and the occurrence of a subpop-
ulation of very small adipocytes) was also clearly evident
in prenatally nutrient-restricted adult offspring regard-
less of postnatal diet [39]. These morphological changes
were similar to the previously mentioned morphological
changes observed in non-obese 6 months old lambs. We
were to our knowledge the first to report that prenatal
undernutrition has long-term implications for compos-
ition of fatty acids in skeletal muscle, liver and adipose
tissues [35, 39, 57]. Thus, sheep with a history of pre-
natal undernutrition reduced the myristic acid content
and increased the C16:0 to C18:0 fatty acid ratio in peri-
renal fat, an effect which was not observed in lambs
[39]. The underlying reasons for such a FP of fatty acid
composition in tissue lipids are unknown, and this could
not be ascribed to differences in the postnatal diet. Tis-
sue levels of myristic acid appear to be rate-limiting for
a process termed protein myristoylation, and myristoyla-
tion impacts function of appr. 0.5–3% of the human
proteome [58], and the consequences of such changes
thus merit to be addressed in future studies. Prenatal
undernutrition was also associated with increased trigly-
ceride, ceramide and free fatty acid contents in livers of
adult sheep, which was not observed in lambs [57].
Although studies focusing on early life nutritional im-

pacts in adult offspring are relatively scarce, it seems rea-
sonable to conclude that (subcutaneous) adipose tissue
morphology and expandability (increased extracellular

Fig. 4 Impacts of late gestational nutrition on hyperplasia and hypertrophy of different adipose tissue depots in adolescent (6 months old)
offspring (obtained from Khanal et al., unpublished data). SF, subcutaneous fat (encircled as green); MF, mesenteric fat (encircled as yellow); PRF,
perirenal fat (encircled as red). For HIGH, NORM and LOW, see legends for Fig. 1. Each hexagonal structure represents an individual adipocyte
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matrix, abundance of very small adipocytes) as well as hep-
atic and adipose lipid composition appear to be a perman-
ent target of FP induced by late gestational undernutrition.

Glucose-insulin axis function
The functionality of a whole range of endocrine systems is
altered in animals subjected to maternal malnutrition, but
long-lasting impacts appear to be less pronounced follow-
ing prenatal overnutrition as compared to undernutrition.
Undernutrition during late, but not early, gestation in
sheep led to impaired insulin sensitivity of peripheral tis-
sues (reduced glucose tolerance) in adult offspring along-
side increased adipose tissue mass [59]. This is consistent
with our previous studies, where we found that a depres-
sion of insulin sensitivity [45], reduced pancreatic insulin
secretory capacity as well as plasticity of down-regulation
of insulin secretion [60] persisted into adulthood in sheep
with a history of late gestation undernutrition.
In contrast, the adverse impacts of an early postnatal

high-fat diet on glucose-insulin axis function, which
were clearly observed in lambs (poorer glucose toler-
ance, reduced insulin secretion and clearance ability),
completely disappeared in adult sheep when they were
shifted from a high-starch-high-fat to a normal diet and
normalization body fat contents [45].
In ruminants as in monogastrics, insulin is the hormone

responsible for stimulating transport of glucose into insulin-
sensitive tissues, where skeletal muscle and adipose tissues
are the most important, but not into insulin-insensitive tis-
sues including tissues important for reproduction (mam-
mary gland and the conceptus). Thus, poor insulin
sensitivity and reduced plasticity of pancreatic insulin secre-
tion in sheep exposed to undernutrition in late foetal life,
can undoubtedly influence how different tissues are ad-
justed or prioritized for the glucose utilization during repro-
ductive cycle, pregnancy, etc. [61] and hence the (re)
production potential of animals.

Thyroid-hormone axis function
Studies on prenatal nutritional impacts on TH axis func-
tion in farm animals are very scarce, although these hor-
mones affect the adaptation and maintenance of a wide
range of body functions under different environmental
conditions [62] and also play an important role in end-
ing seasonal reproduction in ewes [63]. In one study,
adult hyperthyroidism was observed in adult sheep ex-
posed to late gestation undernutrition and this was asso-
ciated with increased thyroid expression of genes
regulating TH synthesis and deiodination. It also in-
creased the number of TH receptors and deiodinase
mRNA expression in different target tissues such as liver,
cardiac muscle and longissimus dorsi muscle but de-
creased the number of TH receptors and deiodinase
mRNA expression in adipose tissues [64]. This suggests

that long-term TH axis function is a target of FP in re-
sponse to foetal undernutrition during late gestation, but
its potential influences on animal production traits re-
main to be established.

Other endocrine functions
In our Copenhagen sheep model, alterations in HPA axis
function and leptin response were induced by late gesta-
tional undernutrition and became manifested in adult-
hood regardless of the dietary exposures early in
postnatal life. Prenatally undernourished male lambs and
adult female animals had, as already mentioned, in-
creased adrenal weights [9], and we observed that the
adult sheep also had elevated plasma cortisol levels and
responded to fasting with a reduction in the cortisol
levels [53], in contrast to an expected increase plasma
cortisol levels during fasting. This may indicate hyper-
activity of the HPA axis, and confirms the previous find-
ing in which increased HPA axis response was observed
in adult sheep offspring exposed to a short duration of
undernutrition during late foetal life [5]. The GH-IGF-1
axis and adaptations to leptin also appear to be targets
of FP. In our prenatally undernourished sheep total
plasma IGF-1 concentrations were unexpectedly in-
creased during fasting (presumably due to extended
half-life in the blood), whereas plasma leptin concentra-
tions were higher during fasting from much lower levels
than in non-programmed sheep [45].
Thus, all the hypothalamic-pituitary axes hitherto stud-

ied (TH, GH-IGF-1, HPA) have been shown to be targets
of FP. However, the phenotypic manifestation of this pro-
gramming may not become manifested until the animals
approach adulthood, and the consquences for productive
functions in adulthood are not well-known. The hypothal-
amus is a main target for leptin, a hormone produced in
white adipose tissues, and hypothalamic binding of leptin
can induce changes in all hypothalamic-pituitary endo-
crine axes in addition to its role in down-regulation of
feed intake [65] Considering that FP also induces abnor-
malities of adipose tissue morphology (fibrosis and very
small adipocytes), this has led us to hypothesize that FP
may target the entire leptin-hypothalamic-pituitary axis.
It is not known, to what extent overnutrition in late

foetal life can predispose for similar long-term impacts
on this axis, but it can, as previously reviewed, predis-
pose for increased fat deposition, and the development
of leptin resistance, with associated defects in a number
of endocrine systems affecting hypothalamic appetite
regulators and metabolic function [66].

Reproductive function
Considering that the nutritional history in foetal life has
implications for all aspects of later HPA axes previously
studied, it is not surprising that reproductive development
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during foetal and neonatal life is also affected [67, 68] with
consequences for subsequent reproductive function in
adulthood. There are, however, relatively few studies on
these issues, and it is still not clear to what extent the
changes in reproductive function are a consequence of FP
targeting reproductive organs directly or there may be in-
direct effects of altered functions of other endocrine sys-
tems and changes in energy metabolism.
It has been shown that both over- (ad libitum feeding)

and undernutrition (60% of dietary requirements) during
a period of 8 wk prior to oocyte collection in ewes led to
reduced oocyte competence and fertilization and poor
early embryonic development [69]. Additionally, uunder-
nutrition during the early stages of pregnancy, before
and during the period of folliculogenesis, delayed foetal
ovarian follicular development in sheep [70]. These find-
ings may explain impaired reproductive funtion in sheep
offspring observed in other studies. For example, pre-
natal undernutrition (50% of energy requirements) dur-
ing the first 95 d of gestation reduced the ovulation rate
in female adult sheep [71]. Furthermore, maternal un-
dernutrition during mid- to late gestation led to a reduc-
tion in the number of large corpora lutea in female
sheep offspring [72]. Nutrition of ewes during late preg-
nancy or lactation can also influence subsequent lifetime
reproductive performance of the female offspring
through impact on the ability to sustain pregnancy, i.e.
avoidance of embryo or foetal loss [73].
Although it appears evident that maternal undernutri-

tion, both in the preconceptional period and during gesta-
tion, can have adverse effects on the overall reproductive
function of the offspring, much remains to be understood
about the impacts of prenatal overnutrition and gesta-
tional stage-specific influences on the development of re-
productive function. Studies are also required to ascertain
whether lactation performance may be affected by sub-
optimal nutrition during foetal life.

Epigenetic changes due to maternal nutrition during
gestation
Epigenetic regulation of gene expression, i.e. DNA methyla-
tion, histone modification etc., could be a potential mech-
anism linking foetal malnutrition to subsequent phenotypic
changes in postnatal life (see reviews [74, 75]). Periconcep-
tional undernutrition in sheep has been shown to induce
epigenetic changes, namely histone acetylation and pro-
moter methylation, of foetal hypothalamic genes including
glucocorticoid receptors and proopiomelanocortin genes
[76], which ultimately affects food intake and energy ex-
penditure after birth. Additionally, periconceptional under-
nutrition has been associated with epigenetic changes in
the adrenal IGF2/H19 genes coexisting with adrenal over-
growth in offspring [77], which may predispose for postna-
tal susceptibility to stress. Periconceptional restriction of

maternal vitamin B and methionine supply led to altered
methylation at CpG islands in the foetal sheep liver and
with increased adult body weight and fatness of the off-
spring [78]. The detailed molecular biological mechanisms
underlying epigenetic modifications in response to foetal
life malnutrition are still poorly understood. Future studies
are needed to identify the impacts of prenatal malnutrition
at different gestational stages on tissue-specific epigenetic
changes and long-term implications of such epigenetic
modifications induced in foetal for animal production and
performance.

Can dietary intervention later in life reverse the adverse
programming outcomes of early life nutrition?
An important issue in animal production is to what ex-
tent undesirable effects of early life malnutrition can be
minimized or completely reversed by dietary or other in-
terventions later in life. Unfortunately, studies investigat-
ing the possibility of reversing undesirable FP outcomes
with dietary interventions later in life are scarce and not
encouraging. We have shown in sheep that it was pos-
sible to effectively reverse the adverse outcomes (in
terms of increased body fat, higher plasma lipid profiles,
poor glucose-insulin homeostasis etc.) induced by an un-
healthy fatness-inducing diet fed in early postnatal life if
the diet was changed later in life to a normal (for sheep)
grass-based diet. Late gestation undernutrition, however,
induced permanent programming outcomes [9, 45], par-
ticularly on lipid and urea metabolism as described pre-
viously, and these implications were more strongly
manifested in adult sheep than lambs, irrespective of
changes in the postnatal diet.
Extremely few studies have focussed on the long-term

impacts of late gestation overnutrition in farm animal
species, but it appears from our studies that the possibil-
ity of recovery from undesirable nutritional program-
ming outcomes is more likely in individuals exposed to
late gestational over rather than undernutrition. The al-
terations observed in body fat composition and glucose-
insulin homeostasis in young lambs with a history of
foetal overnutrition did not persist into adulthood [56].

Conclusion and future perspectives
Foetal or developmental programming can have life-
long impacts on the health and disease status of farm
animals (Table 2), thus affecting the economy of live-
stock production (Fig. 5). Indeed, it has earlier been
reported that foetal programming can be treated as a
management tool to improve the livestock productiv-
ity in commercial farming but long-term programing
impacts specific to different gestational stages and
their interactions with postnatal nutritional environ-
ment are known [79]. Here, we highlight that foetal
programming may be induced during any time point
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from prior to conception until birth, but the exact
manifestation of the foetal programming later in life
will depend on the timing of the insult relative to the
critical time windows during which embryo formation,
placental growth and foetal organogenesis take place.

Serious maternal malnutrition during the earlier parts
of gestation can influence the development of repro-
ductive functions and muscle fibre numbers and char-
acteristics, but this is probably not very likely to
occur under normal production conditions.

Table 2 Major impacts of foetal programming due to abnormal nutrition applied at different stages of gestation and under various
experimental conditions in sheep

Experimental conditions (gestational age and nutritional
environment)

Primary changes in postnatal life Reference

Growth characteristics

Late gestational (105 d to term) overnutrition (150% energy and
110% protein) or undernutrition (50% energy and protein) + Early
postnatal high-fat diet (0 d to 6 mo)

Reduced birth weight due to prenatal undernutrition, but no
impacts due to prenatal overnutrition; Increased abdominal and
perirenal fat deposition relative to subcutaneous fat by prenatal
under- and overnutrition

[10]

Late gestational (105 d to term) undernutrition (50% energy and
protein) + Early postnatal high-fat diet (0 d to 6 mo)

Reduced birth weight; Increased TG, ceramide and free fatty acids
in liver, increased extracellular matrix content and very small
adipocytes proportion in subcutaneous fat, hyperthyroidism and
increased adrenal weights in prenatally undernourished adult sheep
(2 yr)

[9, 39, 57, 64
]

Late gestational (100 d to term) undernutrition (70% of energy
requirements)

Reduced birthweight (18%) and weaning weight, but no weight
differences in adulthood (26 wk)

[21]

Late gestational (115 d to term) overnutrition (133% energy) Increased relative subcutaneous deposition in 1 months old lamb [7]

Late gestational (109 d to term) undernutrition (50% of energy
and protein)

Lowered colostrum yield [24]

Late gestational (105 d to term) undernutrition (50% of energy
and protein)

Lowered birth weight, colostrum and milk yield (lactation
performance)

[25]

Mid-gestational (85 d to 115 d) undernutrition (50% of energy
requirements)

Decreased muscle weights in newborn lambs [33]

Early to mid-gestational (28 d to 78 d) undernutrition (50% of
requirements)

Increased intramuscular fat content in skeletal muscle in 8 mo old
offspring

[15]

Early to mid-gestational (30 d to 70 d) undernutrition (50% of
energy requirements)

Fewer fast and more slow muscle fibres in newborn lambs [33]

Early to mid-gestational (30 d to 80 d) undernutrition (50% of
energy requirements) + Postnatal obesogenic environment
(restricted physical activity) from weaning (10 wk) to 1 yr

Increased hepatic TG accumulation in prenatally undernourished,
obese adult sheep (1 yr.)

[47]

Metabolic and endocrine function

Late gestational (105 d to term) over- (150% energy and 110%
protein) or undernutrition (50% energy and protein) + Early
postnatal high-fat diet (0 d to 6 mo)

Reduced glucose clearance and increased glucogeneogensis in
matched prenatally overnourished high-fat fed lambs; Increased
cholesterol levels in mismatched prenatally undernourished
high-fat diet fed lambs and adult sheep

[10, 46, 56
]

Late gestational (from 105 d to term) undernutrition + Early
postnatal high-fat diet (0 d to 6 mo)

Reduced insulin sensitivity and increased insulin secretory responses
to glucose in prenatally undernourished lambs; Poor glucose
tolerance in mismatched prenatally undernourished high-fat fed
lambs (mismatch group); Poor insulin clearance in prenatally
undernourished high-fat fed adult sheep

[45]

Late gestational undernutrition (from 105 d to term) Reduced insulin secretory ability with increased compensatory
insulin sensitivity in 19 wk. old lambs

[44]

Late gestation undernutrition (from 110 d to term) Poor glucose tolerance in adult sheep (1 yr) [59]

Late gestational overnutrition (from 115 d to term) Increased leptin expression in subcutaneous and perirenal fat
from 1 months old lamb

[7]

Reproductive function

Early gestational (0 d to 95 d) undernutrition (50% energy) Reduced ovulation rate in prenatally undernourished adult female
sheep (20 mo)

[71]

Early to mid (0 d to 30 d) or mid to late (31 d to 100 d)
gestational undernutrition (50% requirements)

Increased number of small follicles in the ovary (early to
mid-gestation undernutrition); reduced large corpora lutea
(mid to late gestation undernutrition) in 10 mo old female lambs.

[72]
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On the other hand, in animals born precocial, such as
sheep, around three quarters of the growth of the foetus
[80], and of the mammary gland of the dam [24], occurs
during the last 2 mo of gestation. For that reason, adverse
FP is much more likely to occur in animal production sys-
tems, and with more severe consequences, during late- ra-
ther than early- to mid-gestation [8, 81, 82], if adequate
attention is not paid to the nutrition of the pregnant dam
[83] particularly during multiple pregnancy. Indeed, this
may be the case in many parts of the world, where the late
gestation period coincides with poor grazing conditions,
e.g. during the dry season in tropical countries [84, 85] or
the winter in the Nordic and alpine regions [86]. Late ges-
tation malnutrition can have a wide range of both short-
term (birth weight, weaning and slaughter weight, and
glucose-insulin regulation) and long-term (metabolic and
endocrine function, including but not limited to the
glucose-pancreatic-hepatic and adipose-hypothalamic-
pituitary axis functions, adipose development, fatty acid
composition, and reproduction) consequences.
In ruminant production systems, young animals used

for meat production are slaughtered within months of
birth to obtain the best slaughter result in terms of eco-
nomic return and meat quality [87]. It can be anticipated
that impacts of adverse nutritional programming in

utero are of minor quantitative significance at this age,
unless the animal has been severely affected during
foetal life. However, the timing of abnormal nutrition ex-
posures in utero and the early postnatal nutrition can
have implications for lean-to-fat ratios in slaughter ani-
mals, since morphogenesis of muscle in precocial species
takes place, and may be programmed during the earlier
parts of gestation, whilst development of adipose tissue
development occurs later in gestation and into early
postnatal life [88].
It has earlier been acknowledged that foetal program-

ming in response to severe or prolonged improper nutri-
tion is likely to affect various production traits in
commercial sheep farming [79]. Here, we suggest that
the best way to manage prenatally programmed animals,
particularly undernourished animals (birth weight devi-
ation by 15–20% of the normal range), is to destine them
for slaughtering, and not allow them to enter into pro-
duction processes taking place in adulthood, since the
major adverse implications of FP become manifested
later in life [45, 89]. Furthermore, there is a risk that un-
desirable traits may be transferred to future generations
due to epigenetic inheritance, and it is therefore advis-
able to apply proper strategies to avoid the entry of ad-
versely programmed animals into reproduction [90, 91].

Fig. 5: Impacts on early life nutrition on animal physiology and metabolism.

Khanal and Nielsen Journal of Animal Science and Biotechnology  (2017) 8:75 Page 11 of 14



Our recent findings suggest that a moderate diet and
lower body fat content later in life can prevent or re-
verse a large part of the impacts induced by fatness de-
velopment in early postnatal life [56]. FP due to late
gestation undernutrition, however, has irreversible life-
time impacts on offspring, which are exacerbated upon
transient fatness development in early postnatal life. Fur-
ther studies are needed to confirm the findings from our
studies that late gestational overnutrition has fewer
long-term detrimental consequences for animal produc-
tion than foetal undernutrition.
There are unfortunately no biomarkers other than

birth weight, which can be used to reliably identify ani-
mals (at an early age) that have undergone FP. Although
more studies are needed to assess the long-term quanti-
tative impacts and economic consequences of FP, and to
find biomarkers and potential means for reversal of such
programming outcomes, commercial animal production
should now acknowledge this phenomenon and devise
management strategies to ensure its prevention and
spread to future generations.
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