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Abstract

The availability of local feed resources in various seasons can contribute as essential sources of carbohydrate and
protein which significantly impact rumen fermentation and the subsequent productivity of the ruminant. Recent
developments, based on enriching protein in cassava chips, have yielded yeast fermented cassava chip protein
(YEFECAP) providing up to 47.5% crude protein (CP), which can be used to replace soybean meal. The use of
fodder trees has been developed through the process of pelleting; Leucaena leucocephala leaf pellets (LLP),
mulberry leaf pellets (MUP) and mangosteen peel and/or garlic pellets, can be used as good sources of protein to
supplement ruminant feeding. Apart from producing volatile fatty acids and microbial proteins, greenhouse gases
such as methane are also produced in the rumen. Several methods have been used to reduce rumen methane.
However, among many approaches, nutritional manipulation using feed formulation and feeding management,
especially the use of plant extracts or plants containing secondary compounds (condensed tannins and saponins)
and plant oils, has been reported. This approach could help todecrease rumen protozoa and methanogens and
thus mitigate the production of methane. At present, more research concerning this burning issue - the role of livestock
in global warming - warrants undertaking further research with regard to economic viability and practical feasibility.
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Introduction
Animals have been an important component in inte-
grated crop-livestock farming systems in developing
countries. In a diversified role, they produce animal pro-
tein food, draft power and farm manure as well as ensur-
ing social status and enriching people’s livelihoods [1].
As the world population is expected to increase from 6
billion to about 8.3 billion in the year 2030 at an average
growth rate of 1.1% per yr, it is essential to be prepared
to produce sufficient food for the increased population
based on locally available resources especially in the devel-
oping countries. The consumption of animal food was
10 kg/yr in the 1960s increasing to 26 kg/yr in 2000 and is
expected to be 37 kg/yr by 2030 [2,3]. Livestock produc-
tion, in particularly buffalo, cattle and small ruminants, is
* Correspondence: metha@kku.ac.th
1Tropical Feed Resources Research and Development Center (TROFREC),
Department of Animal Science, Faculty of Agriculture, Khon Kaen University,
Khon Kaen 40002, Thailand
Full list of author information is available at the end of the article

© 2013 Wanapat et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
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an integral part of food production systems, making im-
portant contributions to the quality and diversity of the
human food supply as well as providing other valuable
services such as work and nutrient recycling. Large in-
creases in per capita and total demand for meat, milk and
eggs are forecast for most developing countries for the
next few decades [4]. In developed countries, per capita
intakes are forecast to change slightly, but the increases
in developing countries, with their larger populations and
more rapid population growth rates, will generate a very
large increase in global demand. Most importantly, the
conversion of materials inedible for humans, such as
roughage, tree fodder, crop residues and by-products, into
human food by ruminant animals will continue to serve as
an important function of animal agriculture. However,
since much of the projected increase is expected to come
from pork, poultry and aquaculture production, and espe-
cially from species consuming diets high in forage carbo-
hydrate, meeting future demand will depend substantially
on achievable increases in cereal yields. Therefore, there
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are opportunities and challenges for researchers to in-
crease animal productivity through the application of ap-
propriate technologies, particularly in production systems,
nutrition and feeding. Wanapat [5] and Devendra and Leng
[6] have emphasized the utmost importance of using local
feed resources as the key driving force to increase the prod-
uctivity of animals in Asia.
Global warming is a highly important issue which affects

the environment and livestock production. Total emissions
of greenhouse gases (GHG) from agriculture, including live-
stock, are estimated to be between 25% and 32%,
depending on the source [7,8] and on the proportion of
land conversion that is ascribed to livestock activities. Inter-
estingly, Goodland and Anhang [9] reported that livestock
production and its by-products are responsible for at least
51 percent of global warming gases, accounting for at least
32.6 billion tons of carbon dioxide per yr. Carbon dioxide
provides most GHG (55-60%) followed by methane (15-
20%). Therefore, livestock is one source of methane produc-
tion through fermentation in the rumen. Gas emissions
from the livestock sector are estimated at between 4.1 and
7.1 billion tons of CO2 equivalents per yr, equating to 15-24
% of total global anthropogenic GHG emissions [10].
Tropical plants normally contain a high to medium

content of secondary compounds such assaponins and
condensed tannins, which have been shown to exert a
specific effect against rumen protozoa while leaving the
rest of the rumen biomass unaltered [11]. Numerous stud-
ies have determined the effects of feeding ruminants with
saponin-rich plants such as Enterelobium cyclocarpum,
Spinadus saponaria, Sapindus rarak, Sesbania sesban,
Quillajasaponaria, Acaciaauriculoformis and Yucca schidi
gera [11,12]. Results have indicated that saponins have a
strong anti-protozoal activity and could thus serve as an
effective defaunating agent for ruminants due to their de-
tergent action [13]. Numerous studies [14-16] have re-
cently reported the impact of livestock on global warming
and suggested approaches to mitigate rumen methane.

Development of pelleted feeds
Pelleted feeds have been used successfully for fish and
animals including non-ruminant and ruminant animals,
fish and shrimp. The advantages of pelleted feeds in-
clude: (1) preventing selective feeding on those ingredi-
ents in the formulation which are more palatable and
thus more desirable to the animal; (2) preventing the
separation of constituents in animal feeds due to varying
size and density; (3) providing higher bulk density, which
has advantages both for shipping and handling, resulting in
maximum load efficiency and reduced storage require-
ments; and (4) improving nutrient utilization and so in-
creasing the feed conversion rate. Pelleting also improves
the acceptability, density and keeping quality of feedstuffs
[17]. Generally, pelleted feeds are produced in an extrusion-
type thermoplastic melding operation in which finely di-
vided particles of a feed ration are formed into compact,
easily-handled pellets. Binder additives may be used to im-
prove the strength and shelf-life of pellets and to reduce the
release of fines during the pelleting process. Preferably, nu-
tritive binder additives are used which also provide essential
recognized nutrients such as magnesium, calcium, potas-
sium and/or sulfur to the feed.
Recently, scientists have been interested in pelleting

local feed resources and agricultural cropresidues, such
as mangosteen (Garcinia mangostana) peel, mulberry
(Morus alba), Leucaena (Leucaena leucocephala), sweet
potato (Ipomoea batatas) vine, to improve the nutritive
value and its utilization. Pellet products such as Mago-pel
(mangosteen peel pellet), Maga-lic (mangosteen peel with
garlic powder pellet), Maga-ulic (mangosteen peel pellet
with urea and garlic powder), LLP (leucaena leaf pellet),
MUP (mulberry leaf pellets) and SWEPP (sweet potato vine
pellet with 10% urea) have been prepared following the
steps shown in Table 1 and Figure 1.
Huyen et al. [18] and Tan et al. [19] have reported that

supplementation with mulberry leaf pellets (MUP) im-
proved nutrient digestibility and rumen fermentation. MUP
could be used as a protein source to improve rumen
efficiency and production especially supplementation at
600 g/d for beef cattle when fed on low-quality roughage
such as rice straw. Norrapoke et al. [20] showed that the
combined use of concentrates containing 16% CP with
Mago-pel at 300 g/hd/d resulted in changes in rumen fer-
mentation and microbial population and an improvement
in milk production in lactating dairy crossbreds. Manasri
et al. [21] reported that supplementation with Maga-lic at
200 g/hd/d improved ruminal fermentation, especially in-
creasing the proportion of propionate and reducing me-
thane gas production in beef cattle steers. Furthermore,
Trinh et al. [22] compared non-supplemented and pellet-
supplemented groups of beef cattle (Mago-pel, Maga-lic
and Mago-ulic at 200 g/hd/d) It was found that total dry
matter intake (DMI) and digestibility of DM and CP were
not significantly affected by pellet supplementation when
compared with the control group (P > 0.05). In addition,
the acetate content, the acetate:propionate ratio, the pro-
tozoa population and methane production were all re-
duced, whereas the propionate production and bacterial
population increased in the pellet-supplemented group
and were highest in the Maga-ulic-supplemented treat-
ment. The Maga-ulic supplemented treatment also pro-
vided the highest level of microbial protein synthesis when
compared with the other treatments. Hung et al. [23]
reported that LLP supplementation significantly increased
rice straw intake and total intake. There was also an in-
crease in the population of fungal zoospores, amylolytic
bacteria, proteolytic bacteria and cellulolytic bacteria with
an increasing level of LLP supplementation while the



Table 1 Feed ingredients and chemical composition of Mago-pel, Maga-lic, Maga-ulic, LLP, MUP and SWEPP

Items Mago-pel Maga-lic Maga-ulic LLP MUP SWEPP

Ingredients % of dry matter

Mangosteen peel powder 98.5 93.5 91.5 - - -

Garlic powder - 5 5 - - -

Leucaena leaf meal - - - 81 - -

Mulberry meal - - - - 82 -

Sweet potato vine - - - - - 81.5

Cassava starch 0.5 0.5 0.5 0.5 0.5 0.5

Urea - - 0.2 10 10 10

Molasses 1 1 1 5 4.5 5

Sulfur - - - 1 1 1

Mineral mixture - - - 1 1 1

Salt - - - 1 1 1

Chemical composition

Dry matter 93.3 93.1 92.7 92.9 92.3 95.6

% of dry matter

Organic matter 96.5 96.4 96.5 91.3 88.2 81.4

Crude protein 21.2 21.5 22.1 42.2 48.7 40.5

Neutral detergent fiber 57.3 57.2 57 44 20.4 33.1

Acid detergent fiber 48.6 48.2 48.3 20 14.5 27.8

Abbreviations: Mago-pel mangosteen peel pellet, Maga-lic mangosteen peel with garlic powder pellet, Maga-ulic mangosteen peelpellet with urea and garlic
powder, LLP leucaena leaf pellet, MUP mulberry leaf pellets, SWEPP sweet potato vine pellet with 10% urea.

Figure 1 Processing chart for pelleting the products (Mago-pel, Maga-lic, Maga-ulic, LLP, MUP and SWEPP).
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population of rumen protozoa decreased. The population
of total bacteria and the three predominant cellulolytic
bacteria increased when the level of LLP supplementation
increased; meanwhile, the population of methanogenic
bacteria decreased. Supplementation with LLP resulted in
an improvement in nitrogen balance and microbial nitro-
gen supply. Recently, Phesatcha and Wanapat [24] revealed
that SWEPP was a good source of protein supplement im-
proving apparent digestibility, rumen fermentation, and
milk yield in lactating dairy cows. A summary of the ex-
perimental data above is presented in Table 2.

Yeast fermented cassava chip protein (YEFECAP)
Cassava chip and other forms of cassava root can be suc-
cessfully fermented with yeast (Saccharomyces cereviceae)
to obtain a final product with high CP and a relatively high
profile of amino acids [25,26]. The amino acid profile of
YEFECAP is presented in Figure 2, showing a high level of
lysine, glutamic acid, leucine and phenylalanine. Supple-
mentation with YEFECAP to replace soybean meal in
concentrates for lactating dairy cows resulted in a good
performance in milk yield (15.7 kg/d) [27].
Dietary yeast can be used as a ruminant feed especially

Saccharomyces cerevisiae because the yeast cell contains
useful nutrients for ruminant feed, especially a high lysine
content (7.6 ± 0.7 g/16 g N) [26,28,29]. Moreover, the ad-
dition of yeast to the ruminant diet can not only improve
the rumen environment but also enhance microbial activ-
ities (especially cellulolytic activities so that they increase
fiber digestion, reduce lactate accumulation and the con-
centration of oxygen in rumen fluid and improve the uti-
lization of starch [30,31]. In addition, S. cerevisiae could
also stimulate DM intake and productivity in growing and
lactating cattle [32] and improve microbial protein synthe-
sis and milk production in dairy cows [33,34]. However,
Desnoyers et al. [35] reported that the highly variable ef-
fects of live S. cerevisiae cultures could be associated with
the ratio of forage to concentrate used. Cassava chip is an
Table 2 Effect of of Mago-pel, Maga-lic, Maga-ulic, LLP, MUP,
(VFA) production and ruminal microorganisms

Pelleting Suppl. Animal DMI Dig.

C

MUP 600 g/hd/d Buffalo ↑ ↑ ↓

MUP 600 g/hd/d Buffalo ↑ nd n

Mago-pel 300 g/hd/d Dairy cow nc nc n

Maga-lic 200 g/hd/d Dairy steer nc ↑ ↓

Maga-ulic 200 g/hd/d Dairy steer nc ↑ ↓

LLP 450 g/hd/d Buffalo ↑ nd n

Abbreviations: MUP mulberry leaf pellet, Mago-pel mangosteen peel pellet, Maga-lic
pellet, LLP leucaena leaf pellet, VFA volatile fatty acid, C2 acetic acid, C3 propionic a
control group, nd not determined, nc no change.
energy source with low crude protein, but when fer-
mented with yeast can increase crude protein from 1-3%
CP to 30.4% CP [36]. Recently, Polyorach et al. [26,29]
reported that YEFECAP could be prepared with aCP level
up to 47%. The YEFECAP was prepared according to the
method of Polyorach et al. [29] as shown in Table 3 and
Figure 3.
The beneficial use of YEFECAP has been evaluated by

Boonnop et al. [37] and Wanapat et al. [27,38]. Boonnop
et al. [37] studied the effects of replacing soybean meal
with YEFECAP on rumen ecology and nutrient digest-
ibility in dairy crossbred steers. It was found that
YEFECAP could replace soybean meal completely and
was beneficial to cattle in terms of the efficiency of
rumen fermentation, microbial protein synthesis, nitro-
gen retention and nutrient digestibility. Khampa et al.
[39] reported that supplementation with YEFECAP could
replace 75% of concentrate to improve ruminal fermen-
tation efficiency and average daily gain and also reduce
the cost of production in dairy heifers. Supplementation
with YEFECAP could improve the population of bacteria
and fungal zoospores, but decrease the population of
Holotrich and Entodiniomorph protozoain the rumen of
dairy steers [40]. Polyorach et al. [41] and Wanapat et al.
[27,38] revealed that using YEFECAP to replace soybean
meal at 0, 33, 67 and 100% CP could enhance milk yield,
milk fat and milk protein with increasing YEFECAP level
and was highest at a 100% level of replacement. More-
over, Wanapat et al. [38] compared four sources of pro-
tein in concentrate diets, soybean meal (SBM), cassava
hay (CH), Leucaena leucocephala (LL) and YEFECAP in
lactating dairy cows and found that CP digestibility was
highest in CH- and YEFECAP-supplemented groups.
Propionic acid content was highest in cows receiving
CH and YEFECAP, while populations of ruminal fungi,
proteolytic and cellulolytic bacteria were highest with
YEFECAP supplementation. Milk fat and milk protein
content significantly increased in cows fed with CH and
SWEPP on DMI, digestibility, rumen volatile fatty acid

VFA CH4 MPS Prot. Reference

2 C3 C4

↑ ↑ ↓ nd ↓ [18]

d nd nd nd ↑ nd [19]

c nc nc nc ↑ ↓ [20]

↑ nc ↓ nd ↓ [21]

↑ nc ↓ ↑ ↓ [22]

d nd nd nd ↑ ↓ [23]

mangosteen peel and garlic pellet, Maga-ulic mangosteen peel, garlic and urea
cid, C4 butyric acid, CH4 methane production, increase (↑), decrease (↓) from
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Figure 2 Amino acid profile of YEFECAP products (mg/100 g of YEFECAP). Source: Polyorach et al. [26].
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YEFECAP (P < 0.05). Based on these studies, YEFECAP
can be practically prepared and used as an alternative
protein source in ruminant feeding (Table 4).
Wanapat et al. [27,38] reported on a study using

YEFECAP to replace soybean meal (SBM) in concentrate
mixtures for early lactating cows. It was found that
YEFECAP can completely replace SBM in concentrate
mixtures for milking dairy cows while enhancing rumen
fermentation, dry matter intake, nutrient digestibility, milk
yield and composition. A summary of the above research
data is shown in Table 5.
Use of plant secondary compounds in methane reduction
Plant secondary compounds (condensed tannins and sa-
ponins) are important ruminant feed additives, particu-
larly for a methane mitigation strategy because of their
natural origin as opposed to chemical additives (Figure 4).
Table 3 Chemical composition of yeast fermented
cassava chip protein (YEFECAP)

Chemical composition YEFECAP

Dry matter 90.6

% of dry matter

Organic matter 97.2

Crude protein 47.5

Ether extract 7.9

Neutral detergent fiber 6.1

Acid detergent fiber 4.3

Source: Polyorach et al. [26].
Anti-methanogenic activity can be attributed to both con-
densed tannins and hydrolysable tannins. There are two
modes of action of tannins in methanogenesis: a direct
effect on ruminal methanogens and an indirect effect on
hydrogen production due to lower feed degradation. There
is also evidence that some condensed tannins (CT) can re-
duce methane emissions while reducing bloat and increas-
ing amino acid absorption in the small intestine. Methane
emissions are also commonly lower with higher propor-
tions of forage legumes in the diet, partly due to lower
fiber contact, a faster rate of passage and, in some cases,
the presence of condensed tannins [42,43]. Supplementa-
tion with Phaseolus calcaratus hay (PCH) at 600 g/hd/d
was beneficial for swamp buffaloes fed rice straw as a basal
roughage, as it resulted in increased DM intake, reduced
protozoal numbers and methane gas production in the
rumen, increased N retention as well as improving the effi-
ciency of rumen microbial CP synthesis [44]. Legumes
containing condensed tannin (e.g. Lotuses) are able to
lower methane (based on g/kg DMI) by 12-15% [42,45].
Also, some authors have reported that condensed tannins
can reduce methane production by 13 to 16% (DMI basis)
[46,47], mainly through a direct toxic effect on methan-
ogens. More recently, Woodward et al. [47] carried out a
similar trial with cows fed Lotus corniculatus and found
that methane production were reduced,McAllister and
Newbold [48] reported that extracts from plants such as
rhubarb and garlic could also decrease methane emissions.
However, there is little information on the effect of differ-
ent saponins on rumen bacteria. In one study, Sirohi et al.
[49] showed that plant secondary metabolites (PSM) at



Figure 3 Process chart for yeast fermented cassava chip products (YEFECAP) preparation. Polyorach et al. [29].
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low concentrations could be used to manipulate rumen
fermentation favorably. At an appropriate dose, saponins
or saponin-containing plants have been shown to suppress
the protozoal population, increase the bacteria and fungi
population, the production of propionate, the partitioning
factor, the yield and efficiency of microbial protein synthe-
sis and to decrease methanogenesis, all of which improve
performance in ruminants. Tannins, especially condensed
tannins (CT), also decrease methane production and in-
crease the efficiency of microbial protein synthesis. Plant
extracts, rich in flavonoids, increase the degradation of cell
wall constituents and also the yield and efficiency of mi-
crobial protein synthesis [49].
Table 4 Effect of using YEFECAP as a protein source in rumin
production, ruminal microorganisms, and milk production in

Animal DMI Dig. TVFA C2 C3 C2:C3 Ba

Lactating dairy cows ↑ ↑ ↑ nc ↑ ↓

Dairy steers ↑ ↑ ↑ ↓ ↑ ↓

Lactating dairy cows ns ↑ ↑ nc ↑ nd

Abbreviations: DMI dry matter intake, TVFA total volatile fatty acid, C2 acetate, C3 pr
synthesis, increase (↑), decrease (↓) from control group, nd not determined, nc no c
Saponins are natural detergents found in many plants.
Interest has increased in using saponin-containing plants
as a possible means of suppressing or eliminating proto-
zoa in the rumen. Decreased numbers of ruminal ciliate
protozoa may enhance the flow of microbial protein from
the rumen, to increase the efficiency of feed utilization
and decrease methanogenesis. Saponins are also known to
influence both the composition and number of ruminal
bacterial species through specific inhibition or selective
enhancement of the growth of individual species. Saponins
have been shown to possess strong defaunation properties
both in vitro and in vivo which could reduce methane
emissions [45]. Beauchemin et al. [42] recently reviewed
ants on DMI, digestibility, rumen volatile fatty acid (VFA)
various studies

ct Prot Fung MSP Milk Reference

Yield Fat Protein

↑ nc ↑ nd ↑ ↑ ↑ [27]

↑ ↓ ↑ ↑ nd nd nd [37]

↑ ↓ ↑ nd nc ↑ ↑ [38]

opionate, C2:C3 proportion of acetate to propionate, MPS microbial protein
hange.



Table 5 Effect of YEFECAP as a protein source in
concentrate mixtures on milk production, milk
composition and economic return

Items Treatments SEM Contrasts

T1 T2 T3 T4 L Q C

Production

Milk yield, kg/d 13.5 14.0 14.5 15.0 0.27 ** ns ns

3.5% FCM1, kg/d 13.7 14.7 15.9 17.1 0.49 ** ns ns

Milk composition, %

Protein 4.0 4.1 4.5 4.7 0.17 ** ns ns

Fat 3.2 3.3 3.4 3.5 0.06 ** ns ns

Lactose 4.5 4.6 4.6 4.7 0.07 ns ns ns

Solids-not-fat 8.2 8.4 8.4 8.5 0.29 ns ns ns

Total solids 12.3 12.7 12.8 13.0 0.78 ns ns ns

Milk urea N, mg/dL 14.8 12.5 12.3 12.0 0.58 * ns ns

Economic return, $US/hd/d

Feed cost 2.5 2.6 2.6 2.7 0.14 ns ns ns

Milk sale 9.5 9.8 10.2 10.5 0.19 ** ns ns

Profit 7.0 7.2 7.6 7.8 0.16 ** ns ns

Source: Wanapat et al. [27].
ns, non-significance.
Level of replacement of soybean meal (SBM) by YEFECAP: at 0% (T1), 33% (T2),
67% (T3), 100% (T4).
Feed cost: concentrate T1, 0.38 $US/kg, T2, 0.37 $US/kg, T3, 0.37 $US/kg, T4,
0.35 $US/kg, ULRS, 0.07 $US/kg, Milk price, 0.7 $US/kg.
L, linear, Q, quadratic, C, cubic, SEM, standard error of the means; * P<0.05;
** P<0.01.

Figure 4 Role of plant secondary compounds (condensed tannins and
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the literature related to the effect of saponins on methane
and concluded that although there is evidence for a reduc-
tion in methane from some sources of saponins, not all are
effective [45]. While extracts of CT and saponins may be
commercially available, their cost is currently prohibitive
for their routine use in ruminant production systems.
However, research is still required on the optimum sources
of CT and saponins, the level of CT astringency (chemical
composition) and the feeding methods and dose rates re-
quired to reduce methane and stimulate animal production.
Table 6 presents the data from both in vitro and in vivo

trials using mangosteen peel powder (MP) with or without
other sources on rumen fermentation. Based on these re-
sults, MP supplementation both for in vitro and in vivo tri-
als significantly increased the production of total volatile
fatty acids (P < 0.05), as well as propionate production,
while acetate, butyrate production and the acetate:propion-
ate ratio were significantly decreased (P < 0.05). Condensed
tannins and saponins contained in MP could contribute to
the above effects. Similar effects, especially regarding the
acetate:propionate ratio, were found by Beauchemin and
McGinn [50] while total volatile fatty acids were decreased.
The effects of supplementation with MP on DM intake,
digestibility and rumen methane production are reported
in Table 7. These findings showed that MP supplementa-
tion did not affect DM intakes, while digestibility and
rumen methane production (by estimation using volatile
fatty acid concentration) were significantly decreased (P <
0.05). The effects of MP supplementation on the popula-
tion of ruminal microorganisms are shown in Table 8. MP
saponins) on rumen fermentation process [1].



Table 6 Effect of mangosteen peel supplementation on rumen volatile fatty acid production in ruminants using in vitro
and in vivo studies

Substrate Level Species TVFA C2 C3 C4 C2/C3 References

In vitro

MP 200 mg Steer + + + ─ ─ [52]

In vivo

MP 100 g/hd/d Beef cattle + ─ ─ ─ ─ [52]

MP 200 g/hd/d Dairy cows + ─ + + ─ [53]

MP 100 g/hd/d Native cattle + ─ + ─ ─ [51]

MP 30 g/kg Buffalo + ─ + ─ ─ [54]

MPP 200 g/hd/d Beef cattle + ─ + ─ ─ [22]

MPP 300 g/hd/d Dairy cow + ─ + ─ ─ [20]

Combination

CO + MP 50 + 30 g/kg Buffalo ─ ─ + ─ ─ [54]

MP + GP 9 + 1% Beef cattle + + + ─ ─ [22]

MP + GP pellet 200 g/hd/d Beef cattle + ─ + ─ ─ [22]

Abbreviations: GP garlic powder, MP mangosteen peel powder, MPP mangosteen peel pellet, CO coconut oil, + increased, ─ decreased.
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supplementation reduced rumen protozoa production re-
markably, while the numbers of the predominant cellulo-
lytic bacteria increased (P < 0.05). In addition, methanogen
numbers tended to decrease. However, it was found that
mangosteen peel powder significantly increased (P < 0.05)
the cellulolytic bacteria population [51]. The condensed
tannins and saponins present in the MP could influence
such changes in the rumen.
There are five possible mechanisms by which lipid sup-

plementation reduces methane: reducing fiber digestion
(mainly in long chain fatty acids); lowering DMI (if total
dietary fat exceeds 6-7%); suppression of methanogens
(mainly in medium chain fatty acids); suppression of rumen
protozoa and to a limited extent through biohydrogenation
Table 7 Effect of mangosteen peel supplementation on intak
using in vitro and in vivo studies

Substrate Level Species

In vivo

MP 100 g/hd/d Beef cattle

MP 200 g/hd/d Dairy cows

MP 100 g/hd/d Native cattle

MP 30 g/kg Buffalo

MPP 200 g/hd/d Beef cattle

MPP 300 g/hd/d Dairy cows

Combination

CO + MP 50 + 30 g/kg Buffalo

MP + GP 9 + 1% Beef cattle

MP + GP pellet 200 g/hd/d Beef cattle

Abbreviations: GP garlic powder, MP mangosteen peel powder, MPP mangosteen pe
+ increased, - ─ decreased.
[42]. Oils offer a practical approach to reducing methane in
situations where animals can be given daily feed supple-
ments, but excess oil is detrimental to fiber digestion and
animal production. Oils may act as hydrogen sinks but
medium chain length oils appear to act directly on me-
thanogens and reduce the numbers of ciliate protozoa.
However, Kongmun et al. [55] reported that supplementa-
tion of coconut with garlic powder could improve in vitro
ruminal fluid fermentation in terms of the volatile fatty acid
profile, reduced methane losses and reduced protozoal
population. Beauchemin et al. [42] recently reviewed the ef-
fects of the level of dietary lipid on methane emissions in
17 studies and reported that with beef cattle, dairy cows
and lambs, there was a proportional reduction of 0.056
e, digestibility and methane production in ruminants

DMI Dig CH4 References

+ + ─ [52]

nc + ─ [53]

nc + ─ [55]

nc ─ ─ [54]

nc + ─ [22]

+ nc ─ [20]

nc + ─ [54]

nc + ─ [22]

nc + ─ [22]

el pellet, CO coconut oil, nc not changed.



Table 8 Effects of mangosteen peel powder supplement on population of rumen microbes

Substrates Level, g/h/d Protozoa Methanogens RF RA FS Species References

(+/−) (+/−) (+/−) (+/−) (+/−)

MP 100 −* nd nd nd nd Beef cattle [52]

MP 100 − − +* +* +* Native cattle [51]

MP 300 −* nd + + + Dairy cows [20]

Abbreviations: MP mangosteen peel powder, plus symbol, minus symbol increase or decrease from control group, nd not determined, RF ruminococcus flavefaciens,
RA ruminococcus albus, FS fibrobactor succinogenes *P < 0.05, significantly different from control group.
+ increased, - ─ decr.

Wanapat et al. Journal of Animal Science and Biotechnology 2013, 4:32 Page 9 of 11
http://www.jasbsci.com/content/4/1/32
(g/kg DM intake) in methane for each 10 g/kg DM addition
of supplemental fat. While this is encouraging, many factors
need to be considered such as the type of oil, the form of
the oil (whole crushed oilseeds vs. pure oils), handling is-
sues (e.g. coconut oil has a melting point of 25°C) and the
cost of oils which has increased dramatically in recent years
due to the increased demand for food and industrial use.
Few reports cover the effect of oil supplementation on me-
thane emissions from dairy cows, where its impact on milk
fatty acid composition and overall milk fat content would
need to be carefully studied. Recent strategies, based on
processed linseed, turned out to be very promising in both
respects. Most importantly, a comprehensive whole system
analysis needs to be carried out to assess the overall impact
on global GHG emissions [45].
Manh et al. [56] reported that supplementation with

Eucalyptus leaf meal at 100 g/d for ruminants could be
an alternative feed enhancer: it reduces the production of
rumen methane gas in cattle, while the digestibility of nu-
trients was unchanged. Conversely, Pilajun and Wanapat
[54] reported that increasing the coconut oil and Mago-pel
levels decreased proportion of methane production, and
that a suitable level should not exceed 6% for coconut oil
and 4% DM for MPP supplementation. In the future, com-
prehensive research into the individual components of
Table 9 Effects of plant secondary compounds and plant oil o
various studies

Substrates Level

Garlic powder 16 mg

Coconut oil 16 mg

Soapberry fruit and mangosteen peel pellet 4%

Mangosteen peel powder 100 g/hd/d

Coconut oil 7%

Coconut oil 7%

Coconut oil Garlic powder 8:4 (mg)

Coconut oil + Garlic powder 7% + 100 g

Eucalyptus oil 0.33-2 ml/L

Eucalyptus oil 0.33-1.66 ml/L

Eucalyptus meal leaf 100 g/d

* Values are significantly different (P < 0.05) from control group; +,- the values were
essential oils, the physiological status of animals, the nutri-
ent composition of diets and their effects on the rumen
microbial ecosystem and metabolism of essential oils will
be required to obtain consistent beneficial effects. More-
over, previous work, based on using plant secondary com-
pounds and oils in both in vitro and in vivo trials,
concerning rumen microorganisms, methane production
and their impact on the mitigation of methane in the
rumen, shows great potential for improving rumen ecology
in the study of ruminant productivity (Table 9).

Conclusion
We can conclude that local feed resources are of prime
importance for ruminant feeding especially in the tropics
and sub-tropical regions. These resources can be estab-
lished, developed and utilized for feed on the farm as well
as being processed commercially by industrial enterprises.
They can be used as sources of energy and/or protein ei-
ther as ingredients in concentrate mixtures or as feed sup-
plements. They have provided good results for enriching
the efficiency of rumen fermentation and subsequent ru-
minant productivity as well as mitigating rumen methane.
Using feeds containing plant secondary compounds and es-
sential oils is recommended as a means for reducing rumen
methane. However, the potential benefits of manipulating
n digestibility and methane gas production in

Methane,% Animal References

(−) 22.0* Buffalo (fluid) [55]

(+) 6.4* Buffalo (fluid) [55]

10.0 Holstein heifers [25]

(−) 10.5 Beef cattle [51]

(+) 39.5* Beef cattle [51]

(−) 10.2* Buffalo [55]

(−) 18.9* Buffalo [55]

(−) 9.1* Buffalo [55]

30.3-78.6% Sheep [57]

4.47-61.0% Buffalo [58]

reduce Cow [56]

increased or decreased from control group.
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rumen ecology to improve feed utilization efficiency in ru-
minants warrants undertaking further research and devel-
opment in this area.
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