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Abstract 

Background  In poultry, the smooth transition of follicles from the preovulatory-to-postovulatory phase impacts egg 
production in hens and can benefit the poultry industry. However, the regulatory mechanism underlying follicular 
ovulation in avians is a complex biological process that remains unclear.

Results  Critical biochemical events involved in ovulation in domestic chickens (Gallus gallus) were evaluated 
by transcriptomics, proteomics, and in vitro assays. Comparative transcriptome analyses of the largest preovulatory 
follicle (F1) and postovulatory follicle (POF1) in continuous laying (CL) and intermittent laying (IL) chickens indicated 
the greatest difference between CL_F1 and IL_F1, with 950 differentially expressed genes (DEGs), and the smallest 
difference between CL_POF1 and IL_POF1, with 14 DEGs. Additionally, data-independent acquisition proteomics 
revealed 252 differentially abundant proteins between CL_F1 and IL_F1. Perivitelline membrane synthesis, steroid 
biosynthesis, lysosomes, and oxidative phosphorylation were identified as pivotal pathways contributing to ovulation 
regulation. In particular, the regulation of zona pellucida sperm-binding protein 3, plasminogen activator, cathepsin 
A, and lactate dehydrogenase A (LDHA) was shown to be essential for ovulation. Furthermore, the inhibition of LDHA 
decreased cell viability and promoted apoptosis of ovarian follicles in vitro.

Conclusions  This study reveals several important biochemical events involved in the process of ovulation, as well 
as crucial role of LDHA. These findings improve our understanding of ovulation and its regulatory mechanisms in avian 
species.
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Background
Eggs are widely produced and globally consumed as a 
cost-effective and high-quality source of protein. Accord-
ing to the National Bureau of Statistics of China, total 
egg production in China reached 34.56 million tons in 
2022, an increase of 31.0% from that in 2008, showing a 
continuous upward trend (http://​www.​stats.​gov.​cn). This 
rapid increase in egg production is mainly attributed to a 
progressive increase in the scale of rearing [1] and signifi-
cant improvements in the egg production performance 
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of laying hens. Egg production in laying hens is affected 
by various factors, including genetic background [2], 
nutrition [3], environment [4], gut microbiota [5], and 
follicular development in the ovary [6]. Poultry folli-
cular development is a complex process achieved via 
the regulation of many paracrine and autocrine factors 
and dynamic patterns of gene expression [7]. Over the 
past two decades, numerous studies have evaluated the 
molecular mechanisms underlying follicle selection [8, 9]; 
however, little is known about the mechanisms regulating 
follicle ovulation in laying hens.

The transition from preovulatory to postovulatory fol-
licles plays a significant role in the ovulation rate and 
egg production performance [10, 11]. In the domestic 
chicken (Gallus gallus), ovulation occurs in the larg-
est preovulatory follicle, F1, which releases the oocyte 
by rupturing along the stigma region [12]. Ovulation is 
triggered by a luteinizing hormone (LH) surge, whereby 
LH induces a feedback control with gonadal steroids [13, 
14]. More specifically, LH can promote the production 
of progesterone by granulosa cells (GCs), with proges-
terone in turn stimulating an increase of LH release by 
the pituitary gland, forming a positive feedback loop in 
F1 [13, 15]. After F1 rupture, the remaining tissue, named 
the postovulatory follicle (POF), rapidly regresses via 
apoptotic and autophagic processes and does not form 
a corpus luteum [16]. POFs remain in the granulosa and 
theca layers and can secrete prostaglandins [17]. Dif-
ferentially expressed genes (DEGs) screened from F1s 
between different ovulatory stages are involved in cell 
proliferation, lipid metabolism, and inflammatory pro-
cess [18]. Although hormonal secretion rhythms have 
been monitored during ovulation, and transcriptomes 
have been analyzed during changes in LH levels [19–21], 
the biochemical mechanisms underlying poultry ovula-
tion remain largely unknown.

A decline in egg production in aged laying hens is very 
common in layer raising farms and predominantly related 
to follicle dysplasia in the aging ovary [22, 23]. Previously, 
we dissected and observed many aging hens and found 
that continuous laying (CL) hens maintained daily release 
of one oocyte from F1 into the oviduct, forming a POF1. 
Although intermittent laying (IL) hens exhibited a rela-
tively complete set of preovulatory follicles (F6/F5–F1) in 
the ovaries, the F1 in these hens were unable to rupture 
and form a POF1. Therefore, although we speculate that 
ovulation regulation may be linked to F1, its underlying 
mechanism remains unclear. Polycystic ovary syndrome 
(PCOS) is common in the clinical and public health 
fields, affecting up to 20% of the women of reproductive 
age [24]; however, its pathophysiology is complex and 
remains largely unclear [24]. Most patients with PCOS 
have ovarian dysfunction, which usually manifests as 

oligomenorrhea or amenorrhea resulting from chronic 
oligo-ovulation or anovulation [25]. The anovulatory 
phenotype of patients with PCOS is similar to that of 
intermittent laying hens; therefore, understanding the 
ovulation regulatory mechanism in chickens could pro-
vide a basis for prolonging the physiological egg-laying 
ability of aged laying hens, and contribute to biomedical 
modeling for human PCOS research.

In this study, we performed transcriptome analysis to 
uncover the differences between F1s and POF1s in CL 
and IL chickens. Furthermore, we employed a proteomic 
strategy combining data-independent acquisition (DIA) 
mass spectrometry to evaluate F1s and identify biologi-
cal changes and candidate biomarkers in CL and IL hens. 
To the best of our knowledge, this is the first study to 
elucidate the dynamic expression profile and potential 
regulatory network of chicken ovarian follicle ovulation 
through a comparison of CL and IL chickens. Our find-
ings expand the spectrum of relevant genes and provide a 
deeper understanding of the ovulation process in poultry.

Methods
Ethics statement
All animal experimental protocols were approved by 
the Animal Care and Use Committee of China Agricul-
tural University and performed in accordance with the 
National Research Council’s Guide for the Care and Use 
of Laboratory Animals (AW80203202-1-1).

Tissue collection
A population of approximately 300 Yellow-bearded 
chickens, bred from crossing Huiyang Bearded chicken 
with White Leghorn chickens, was raised at the Experi-
mental Chicken Farm of China Agricultural University 
(Beijing, China) under standard conditions and with 
ad  libitum access to food and water. The daily egg pro-
duction of the 300 individuals was recorded for 35 con-
secutive days from the age of 45 to 49 weeks (Additional 
file 1). Subsequently, 5 hens exhibiting high egg produc-
tion and continuous laying of eggs were selected as the 
CL group, whereas 5 hens with low egg production that 
also laid no eggs in the last several days at 50  weeks of 
age, indicating a temporary anovulation state, were 
selected as the IL group (Fig.  1A). The 10 experimental 
hens were humanely euthanized and immediately dis-
sected to collect the follicles. After removing the yolk of 
F1s, the remaining follicle walls of F1s and POF1s were 
washed with phosphate-buffered saline (Gibco, Gaith-
ersburg, MD, USA). All samples were snap-frozen in liq-
uid nitrogen and stored at –80  °C for RNA and protein 
extraction.
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Fig. 1  Global transcriptome patterns of largest preovulatory follicles (F1s) and postovulatory follicles (POF1s). A Record of egg production 
in continuous laying (CL) and intermittent laying (IL) chicken. B Schematic representation of the research workflow. F1 of CL hens (CL_F1), POF1 
of CL hens (CL_POF1), F1 of IL hens (IL_F1), and POF1 of IL hens (IL_POF1) were collected for RNA extraction and subjected to RNA-seq. C Principal 
component analysis (PCA) of RNA-seq data for all samples. PCA plots of the expression patterns of highly expressed genes in CL_F1 and CL_POF1 
(D), IL_F1 and IL_POF1 (E), and CL_POF1 and IL_POF1 (F). Blue-to-red gradient indicates low-to-high gene expression levels
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Transcriptome sequencing and analysis
Total RNA was extracted using TRIzol reagent (Invit-
rogen, Carlsbad, CA, USA). RNA quality and quantity 
were assessed using gel electrophoresis, a NanoDrop 
2000 spectrophotometer (Thermo Fisher Scientific, 
Wilmington, DE, USA), and an Agilent Bioanalyzer 
2100 Bioanalyzer (Agilent Technologies, Santa Clara, 
CA, USA). RNA-seq libraries were constructed using 
RNAs extracted from CL_F1, CL_POF1, IL_F1, and 
IL_POF1 (Fig.  1B); 5 replicates were designed for each 
group. Sequencing was performed by Frasergen Infor-
mation Co., Ltd. (Wuhan, China). Raw RNA-seq data 
were deposited in the National Center for Biotechnol-
ogy Information Sequence Read Archive database under 
accession number PRJNA949555.

Clean reads were obtained by removing adapters and 
low-quality reads using fastp v0.20.1 [26]. The clean reads 
were then mapped to the chicken reference genome, 
Gallus-gallus-6.0, using HISAT2 v2.2.1 [27]. Subse-
quently, we assembled the mapped reads into transcripts 
and quantified the gene expression before normalizing 
the expression levels were normalized to fragments per 
kilobase of transcript per million mapped fragments 
using StringTie [28]. DEGs were identified using DESeq2 
v1.32.0 [29]. Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomics (KEGG) enrichment analyses 
of DEGs were performed using the R package cluster-
Profiler [30] by importing a list of DEGs and converting 
gene names from Ensembl ID to Entrez ID. Based on a 
gene classification method of the GO corpus, the calcu-
lated enrichment test for GO terms and KEGG pathways 
was dependent on the hypergeometric distribution. Gene 
Set Enrichment Analyses (GSEA) of all genes were per-
formed using the clusterProfiler package.

DIA mass spectrometry assay and data analysis
Follicle samples were ground in liquid nitrogen and 
lysed with a lysis solution (8 mol/L urea and 1% protease 
inhibitor cocktail). The homogenate was centrifuged at 
12,000 × g at 4 °C for 10 min, followed by sonication. The 
supernatant was collected, and the protein concentration 
was detected using a BCA kit according to the manu-
facturer’s instructions. The sample was slowly added to 
obtain a final concentration of 20% (m/v) trichloroacetic 
acid for protein precipitation, vortexed, and incubated 
for 2 h at 4  °C. The precipitate was collected by centrif-
ugation at 4,500 × g for 5  min at 4  °C. The precipitated 
protein was then washed three times with pre-cooled 
acetone and dried for 1 min. Protein samples were then 
redissolved in 200  mmol/L triethylammonium bicar-
bonate and ultrasonically dispersed. Trypsin was added 
at a trypsin-to-protein mass ratio of 1:50 for the first 
digestion overnight. The sample was then reduced with 

5 mmol/L dithiothreitol for 60 min at 37 °C and alkylated 
with 11 mmol/L iodoacetamide for 45 min at 25 ± 2 °C in 
darkness. Finally, the peptides were desalted on a Strata 
X SPE column.

The tryptic peptides were dissolved and separated using 
a NanoElute UHPLC system (Bruker Daltonics, Billerica, 
MA, USA) at a constant flow rate of 1,000 nL/min. The 
peptides were subjected to a capillary source, followed 
by timsTOF Pro (Bruker Daltonics) mass spectrometry. 
Tandem mass spectrometry data were processed using 
DIA-NN v1.8 and searched against the BLAST Gallus 
gallus database (27,535 entries). Trypsin/P was specified 
as a cleavage enzyme and up to one missing cleavage was 
allowed. The false discovery rate (FDR) of the precur-
sor was set to 1%. The protein results were exported for 
further bioinformatic analyses. DIA mass spectrometry 
measurements were performed using PTM Biolabs Co., 
Ltd. (Hangzhou, China). Proteomic data were deposited 
in the ProteomeXchange Consortium (http://​prote​omece​
ntral.​prote​omexc​hange.​org) via the iProX partner reposi-
tory [31, 32] with the dataset identifier PXD041276.

Protein–mRNA correlation analysis
Following gene-wise protein–mRNA correlation analysis 
for all genes detectable by both transcriptomic and pro-
teomic approaches, global Spearman’s correlation coeffi-
cients (rho) were calculated within the F1 of CL and IL. 
FDR values were computed using the Benjamini–Hoch-
berg procedure. Subsequently, a KEGG pathway enrich-
ment analysis was performed.

Quantitative real‑time PCR assay (qRT‑PCR)
Six DEGs, HSD3B1, LHCGR​, NR5A1, CTSA, PTGS2, and 
RLN3, were selected to validate expression differences 
using qRT-PCR. We hypothesized that these six genes 
may be involved in regulating follicular development or 
ovulation process [33–36]. The qRT-PCR assay was con-
ducted as previously described [37]. Briefly, 2 μg of RNA 
from each group (n = 5) was reverse-transcribed into 
cDNA using FastKing gDNA Dispelling RT SuperMix 
(Tiangen, Beijing, China). qRT-PCR was performed on a 
CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA) 
using 2 × SYBR Green Fast qPCR Mix (Abclonal, Wuhan, 
China). The primers used to quantify gene expression 
were designed using Primer-BLAST (National Center 
for Biotechnology Information) [38] and synthesized by 
Sangon Biotech Co., Ltd. (Shanghai, China). The 2−��Ct 
method was used to calculate relative gene expression 
levels, and β-actin was used as a housekeeping gene [39].

Western blotting
The relative expression levels of proteins in follicles 
were detected by western blotting. Total tissue protein 
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was extracted using RIPA Lysis Buffer with a protease 
inhibitor cocktail (Beyotime Biotechnology, Shanghai, 
China), and the concentration of the supernatant was 
determined using the BCA Protein Assay Kit (Beyo-
time Biotechnology) [40] (n = 4). Proteins (50 μg) were 
separated by Bis–Tris SDS-PAGE and transferred onto 
polyvinylidene fluoride membranes (Bio-Rad). The 
membranes were blocked in Blocking Buffer (Beyo-
time Biotechnology) for 20  min at 25 ± 2  °C and incu-
bated overnight with primary antibody solutions at 
4 °C. The membranes were then further incubated with 
a secondary antibody (Solarbio, Beijing, China) conju-
gated to horseradish peroxidase at room temperature 
(25 ± 2 °C) for 1 h. The primary antibodies of α-Tubulin 
(Absin, abs131993), ALDOB (Abclonal, A3728), LDHA 
(Abclonal, A16394), FMOD (Abclonal, A6375), and 
PTDSS1 (Abclonal, A13065) were diluted to a ratio of 
1:1,000 according to the manufacturer’s instructions. 
The secondary antibodies (Solarbio, Beijing, China) 
were diluted to a ratio of 1:5,000. α-Tubulin was used as 
the reference protein, and protein bands were quanti-
fied using ImageJ v2.0 [41].

Cell isolation and culture
GCs and theca cells (TCs) from F1 were isolated and 
cultured as described previously [42, 43] (n = 3). After 
removing connective tissue from the follicle surface, 
the GC and TC layers were subjected to enzymatic 
digestion by collagenase type II (Sigma Aldrich, Inc., St. 
Louis, MO, USA) at 37  °C; GC and TC were digested 
for 5  min and 30  min, respectively. Cell suspensions 
containing GC or TC were filtered using cell strain-
ers (Biosharp, Hefei, Anhui, China) with a pore size of 
50  μm. The cells were maintained in a basal medium 
consisting of Dulbecco’s modified Eagle medium 
(Gibco, Gaithersburg, MD, USA) with 15% fetal bovine 
serum (Gibco) and 1% penicillin–streptomycin (Gibco) 
in an incubator at 37  °C with a 5% CO2 humidified 
atmosphere. The lactate dehydrogenase A (LDHA) 
inhibitor FX-11 (MedChemExpress, Monmouth Junc-
tion, NJ, USA) was diluted in dimethyl sulfoxide 
(Solarbio), which was used as a vehicle in the control 
group. Various doses of FX-11 (5  μmol/L, 10  μmol/L, 
and 15 μmol/L) were used to pretreat GCs at 37  °C in 
an atmosphere of water-saturated 5% CO2. Lactate 
dehydrogenase (LDH) activity assays were performed 
using the LDH Activity Assay Kit (Solarbio), following 
the manufacturer’s instructions. Cell Counting Kit-8 
(CCK8, Beyotime Biotechnology) and Annexin V-FITC 
Apoptosis Detection Kit (Beyotime Biotechnology) 
were used to analyze cell viability and apoptosis, 
respectively, according to the manufacturer’s protocols.

Statistical analysis and data visualization
All data are presented as mean ± standard error. The 
two groups were compared via t-tests using SPSS v25 
(SPSS Inc., Chicago, IL, USA). Significance was set to 
P < 0.05, with extreme significance set to P < 0.01 or 
P < 0.001. Visualization was performed using Graph-
Pad Prism v8 (GraphPad Software, San Diego, CA, 
USA), ggplot2 [44], EVenn [45], TBtools v0.6673 [46], 
and GSEA plot [47]. Schematics were generated using 
Figdraw (www.​figdr​aw.​com).

Results
Global gene expression characteristics of preovulatory and 
postovulatory chicken follicles
RNA-seq generated 355.91  Gb of clean reads, 91.20%–
93.83% of which were mapped to the chicken reference 
genome. For all samples, at least 91.4% of the reads had 
quality scores equal to or exceeding Q30 (Additional 
file 2). Principal component analysis (PCA) demonstrated 
comprehensive differences in gene expression among the 
four groups. We observed clear separation between F1s 
and POF1s in both CL and IL groups, as well as distinct 
physiologically specific clustering of F1s, whereas cluster-
ing of POF1s showed some overlap between CL and IL 
groups (Fig. 1C). Similar to the PCA results, the Pearson 
correlation analysis showed the best intra-group cor-
relation coefficient was in CL_F1, while the inter-group 
correlation in POF groups was relatively high, and even 
certain samples between CL_POF1 and IL_POF1 exhib-
ited strong correlation (Additional file 3).

Next, we observed gene expression abundance in each 
group, which could be used as physiologically specific 
candidate markers to distinguish between CL and IL 
hens. The expression levels of the luteinizing hormone/
choriogonadotropin receptor (LHCGR​) gene was notably 
higher in CL_F1 and IL_F1 than in CL_POF1 and IL_
POF1 (Fig.  1D). The zona pellucida sperm-binding pro-
tein 3 (ZP3), inhibin alpha subunit, and NPC intracellular 
cholesterol transporter 2 were most abundant in CL_F1 
and CL_POF1 groups (Fig.  1D). The extracellular fatty 
acid-binding protein (EXFABP) and secreted phospho-
protein 1 (SPP1) were most abundant in IL_F1 and IL_
POF1 (Fig. 1E). The Prostaglandin D2 synthase (PTGDS) 
and prostaglandin-endoperoxide synthase 2 (PTGS2) 
exhibited high expression abundance in CL_POF1 and 
IL_POF1 (Fig. 1F).

Transcriptional analysis of F1s and POF1s in continuous 
and intermittent laying hens
According to pairwise comparisons using log2(fold change)  
> 2 and Padj < 0.05 as criteria, 950, 843, 469, and 14 DEGs 
were identified in CL_F1 vs. IL_F1, CL_F1 vs. CL_POF1, 

http://www.figdraw.com
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IL_F1 vs. IL_POF1, and CL_POF1 vs. IL_POF1, respec-
tively (Additional file 4 and Fig. 2A, B). Most DEGs were 
obtained in CL_F1 vs. IL_F1, whereas the fewest DEGs 
were obtained in CL_POF1 vs. IL_POF1, indicating that 
the greatest difference between CL and IL hens lies in 
the preovulatory follicle, F1, rather than POF1. The Venn 
diagram showed that 204 DEGs were shared in the CL_
F1 vs. CL_POF1 and IL_F1 vs. IL_POF1 groups, and 246 
DEGs were shared in the CL_F1 vs. IL_F1 and CL_F1 
vs. CL_POF1 groups, excluding the IL_F1 vs. IL_ POF1 
group (Fig. 2A).

To validate the RNA-Seq results, we performed qRT-
PCR to confirm the expression patterns of the six candi-
date DEGs. Primer information is shown in Additional 
file  5. The resulting expression differences were similar 
to those obtained by RNA-seq (Fig.  2C). For example, 
hydroxy-delta-5-steroid dehydrogenase,3 beta- and ster-
oid delta-isomerase 1 (HSD3B1) and LHCGR​ were highly 
expressed in CL_F1, and PTGS2 was highly expressed in 
POF1s. Linear regression between RNA-seq and qRT-
PCR results showed a positive correlation, with a correla-
tion coefficient (r) of 0.815, supporting the reliability of 
the RNA-seq results (Fig. 2D).

To further investigate the biological functions involved 
in ovulation, DEGs were evaluated by GO functional 
enrichment analysis. In the CL_F1 vs. IL_F1 comparison, 
DEGs were enriched in chemokine proteolysis, integral 
components of membrane, proteolysis, and hydrolase 
activity (Fig. 2E). The DEGs of CL_F1 vs. CL_POF1 were 
clustered into hormone activity, steroid metabolic pro-
cesses, lipid transport, and phospholipid biosynthetic 
processes (Fig. 2F). The main GO categories in IL_F1 vs. 
IL_POF1 were steroid biosynthetic processes, regulation 
of lipid metabolic processes, and extracellular regions 
(Fig. 2G). DEGs in CL_POF1 vs. IL_POF1 were enriched 
in the immune response, cytokine receptor binding, and 
chemokine receptor binding (Additional file 6).

Next, we investigated the expression patterns of ovula-
tion-related DEGs in these groups. As shown in Fig. 2H, 
steroid hormone synthesis-related genes [48], such as 
HSD3B1, cytochrome P450 family 11 subfamily A member 
1 (CYP11A1), and steroidogenic acute regulatory protein 
(STAR​), were highly expressed only in CL_F1, indicating 
that steroid hormone synthesis is most active in CL_F1. 
The major constituents of the perivitelline membrane 

(PVM) of chicken oocytes, ZP3 and uromodulin (UMOD), 
showed high expression levels in CL_F1, suggesting 
that the F1 of continuous laying hens acquired stronger 
mechanical support to adapt to the long journey through 
the oviduct after ovulation (Fig. 1D, 2H) [49, 50]. The lev-
els of cathepsin A (CTSA) and glucosamine (N-acetyl)-
6-sulfatase (GNS), both belonging to the lysosome family, 
as well as those of very low-density lipoprotein receptor 
(VLDLR) and fibrinogen-like 2 (FGL2), were significantly 
reduced in IL_F1 (Fig. 2H).

The expression levels of lipid metabolism-related genes, 
such as EXFABP, fatty acid-binding protein 4 (FABP4), 
and PTGS2, were significantly higher in POF1s than in 
F1s. Moreover, the expression levels of EXFABP and 
FABP4 were slightly higher in IL_POF1 than in CL_POF1 
(Fig.  2H). The DEGs showing high expression levels in 
POFs, including fibronectin 1 (FN1), metallothionein 3 
(MT3), metallothionein 4 (MT4), LDHA, suppressor of 
cytokine signaling 3 (SOCS3), and angiopoietin-like 4 
(ANGPTL4), contributed to increased fibrosis and energy 
metabolism after ovulation (Fig. 2H).

Signaling pathways in poultry ovulation determined 
by functional annotation analyses
The F1-to-POF transition is a key step in poultry ovula-
tion. Therefore, we performed KEGG analyses of DEGs 
in CL_F1 vs. CL_POF1 and IL_F1 vs. IL_POF1. The over-
lapping functional pathways during this transition in 
both CL and IL included arachidonic acid metabolism, 
steroid hormone biosynthesis, and TGF-beta signaling 
pathway (Additional file 7, Additional file 8).

To investigate new and key biological pathways 
involved in the F1-to-POF transition, we performed 
GSEA of all genes expressed in CL_F1 and CL_POF1. 
According to strict detection criteria (P-value < 0.05 and 
FDR < 25%), we identified 82 gene sets (Additional file 9). 
Many of these pathways were also identified in the KEGG 
analysis, thereby validating and supporting the GSEA 
results. We focused on four pathways involved in contin-
uous ovulation: cytokine–cytokine receptor interaction, 
lysosomes, calcium signaling pathway, and apoptosis 
(Fig. 3). Ovulation regulation-related genes were involved 
in the cytokine–cytokine receptor interaction pathway 
with a high normalized enrichment score, low P-value, 
and low FDR (Fig. 3A). Among the many genes identified 

(See figure on next page.)
Fig. 2  Transcriptional characteristics and gene expression dynamics of F1s and POFs. A Venn diagram of differentially expressed gene (DEGs). 
Criteria for DEGs filtering were | log2(fold change)|> 2 and Padj< 0.05. B Heatmap of all DEGs in four comparisons. Blue to red colors indicates 
the relative gene expression level from low to high, respectively. C–D Comparison and Pearson correlation analysis of fold change values in six DEGs 
between qRT-PCR and RNA-seq analysis, respectively. Gene Ontology (GO) terms of DEGs in CL_F1 vs. IL_F1 (E), CL_F1 vs. CL_POF1 (F), and IL_F1 vs. 
IL_POF1 (G). H Heatmap of DEGs involved in ovulation regulation
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Fig. 2  (See legend on previous page.)
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in this pathway by GSEA, CXC motif chemokine recep-
tor 4 (CXCR4), a component of the CXC subfamily, was 
highly expressed in CL_POF1 cells (Fig.  3B). Next, we 
considered the lysosomal pathway (normalized enrich-
ment score = 2.49, P < 0.01 and FDR < 0.01) (Fig.  3C). In 
this pathway, clathrin light chain A (CLTA) was down-
regulated in CL_POF1 (Fig.  3D). In the calcium signal-
ing and apoptosis pathways, adenylate cyclase 9 (ADCY9) 
and cathepsin O (CTSO) were expressed at lower levels 
in CL_POF1 cells than in CL_F1 cells (Fig. 3E–H).

Proteomic profiling of F1 membranes in continuous 
and intermittent laying hens
The aforementioned results confirmed that factors 
involved in regulating the frequency of poultry ovulation 
were expressed in F1 but not in POF1. To further ana-
lyze the mechanism underlying the differences in ovula-
tion frequency among laying chickens, we applied a DIA 
quantitative proteomic approach to analyze samples from 
CL_F1 and IL_F1 (n = 4). A total of 5,670 proteins were 
identified and 5,591 proteins were detected in CL_F1 vs. 
IL_F1 (Fig. 4A, Additional file 10). Proteins with a quan-
titative fold change of > 1.5 or < 0.67 and P < 0.05 were 
identified as differentially abundant proteins (DAPs). In 
total, we identified 230 upregulated and 22 downregu-
lated DAPs in the CL_F1 group compared with the IL_F1 
group (Fig.  4B, Additional file  10). Subsequently, a heat 

map was generated to depict differential protein expres-
sion between groups (Fig. 4C).

Four DAPs, namely, phosphatidylserine synthase 1 
(PTDSS1), fibromodulin (FMOD), LDHA, and aldolase 
and fructose-bisphosphate B (ALDOB) were selected to 
verify the results of DIA proteomic analysis by western 
blotting. Primary antibody information is listed in Addi-
tional file  11. The western blotting results exhibited a 
remarkable degree of consistency with those of the quan-
titative proteomic analyses (Fig. 4D).

Functional annotation of DAPs
As determined by GO analysis, the upregulated DAPs 
in CL_F1 were mainly enriched in the processes of 
proton-transporting V-type ATPase complex, proton 
transmembrane transport, and active transmembrane 
transporter activity. Downregulated DAPs were enriched 
in the extracellular matrix, carboxypeptidase activity, 
serine hydrolase activity, and metallopeptidase activity 
(Fig.  5A). DAPs were involved in various KEGG path-
ways, including oxidative phosphorylation, synaptic vesi-
cle cycle, phagosomes, and chemokine signaling (Fig. 5B).

GO and KEGG pathway enrichment analyses provide 
valuable insights into the mechanism underlying con-
tinuous ovulation in chickens. Carboxypeptidase X, M14 
family member 1 (CPXM1), and carboxypeptidase Z 
(CPZ) levels were lower in IL_F1 than in CL_F1, indicat-
ing that carboxypeptidase activity was inhibited (Fig. 5C). 

Fig. 3  Signaling pathways enriched in follicle ovulation by gene set enrichment analyses (GSEA). GSEA enrichment plots of significant pathways 
in follicle ovulation transition, the cytokine–cytokine receptor interaction pathway (A), lysosomes (C), the calcium signaling pathway (E), 
and apoptosis (G). The normalized enrichment score (NES), P-value, and FDR were determined using GSEA software and are indicated within each 
enrichment plot. B, D, F, and H Box plots showing fragments per kilobase of transcript per million mapped fragments (FPKM) of the key component 
genes in each pathway
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Fig. 4  Proteomic profiling of CL_F1 vs. IL_F1. A Comparison of peptides and proteins in data-independent acquisition strategies. B Volcano plot 
of differentially abundant proteins (DAPs) in the CL_F1 vs. IL_F1 group. DAPs with P < 0.05 and quantitative fold change > 1.5 are marked in red; DAPs 
with P < 0.05 and quantitative ratio < 0.67 marked in blue. C Heatmap of DAPs between CL_F1 vs. IL_F1. D, E Protein expression levels of PTDSS1, 
FMOD, LDHA, and ALDOB in CL_F1 and IL_F1 groups. *P < 0.05, **P < 0.01
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Phosphatidylserine synthase 1 (PTDSS1) and dipeptidyl 
peptidase 4 (FAP) levels were also lower in IL_F1 than in 
CL_F1, suggesting that peptidase activity was inhibited 
(Fig.  5C). Lysosome-related proteins, including CTSH 
and cathepsin C (CTSC), were overexpressed in IL_F1 
(Fig. 5C). ATP synthases, such as ATPase H+ transporting 
V1 subunit D (ATP6V1D) and ATPase H+ transporting 
V1 subunit H (ATP6V1H), and fatty acid binding family 

members, including fatty acid binding protein 5 (FABP5) 
and fatty acid binding protein 3 (FABP3), were more 
highly expressed in IL_F1 than in CL_F1. These results 
support the hypothesis that oxidative phosphorylation 
was upregulated.

A protein–protein interaction network analysis was 
used to identify interactions between DAPs. Three 
proteins were identified as hubs in the network: ras-
related C3 botulinum toxin substrate 2 (RAC2), 

Fig. 5  Functional annotation analysis of DAPs. A Enriched Gene Ontology (GO) terms for DAPs in the proteomics analysis of CL_F1 and IL_F1 
samples. B KEGG pathways enriched in DAPs indicated in the chord plot. C Heatmap of DAPs involved in ovulation regulation. D Protein–protein 
interaction networks of DAPs
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ribonuclease homolog (RSFR), and ubiquinone oxi-
doreductase subunit AB1 (NDUFAB1) (Fig.  5D). 
In addition, heat shock protein family A member 9 
(HSPA9), ALDOB, ras homolog family member G 
(RHOG), adenylate kinase 4 (AK4), and poly (ADP-
ribose) polymerase family member 14 (PARP14) were 
identified as key proteins.

Integrated analysis of transcriptomics and proteomics data
PCA showed clear separation between CL_F1 and IL_F1 
tissues at both the RNA and protein levels, confirming 
the difference between IL_F1 and CL_F1 (Fig.  6A,  B). 
A weak Spearman’s correlation was observed between 
mRNA and protein abundance (Additional file  12). 
Among 4,665 mRNA–protein pairs, 327 (7.0%) displayed 
significant positive correlations with Spearman’s coef-
ficient > 0 and FDR < 0.05, whereas 112 (2.4%) displayed 

Fig. 6  Integrated analysis of transcriptomics and proteomics data. A, B PCA of RNA and protein data in CL_F1 vs. IL_F1, respectively. C Histogram 
showing gene-wise mRNA–protein Spearman’s correlations. D KEGG pathway enrichment for genes with a Spearman’s correlation between mRNA 
and protein abundance (FDR < 0.05). E–H Line plots showing expression profile and correlation coefficient of mRNA and proteins: HK2 (E), CTSC (F), 
LDHA (G), and FABP5 (H)
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significant negative correlations with Spearman’s coeffi-
cient < 0 and FDR < 0.05 (Fig. 6C).

Genes involved in metabolism-related pathways were 
significantly enriched in propanoate metabolism, phe-
nylalanine metabolism, glycolysis/gluconeogenesis, 
lysosome and pyruvate metabolism, and cofactor bio-
synthesis (Fig. 6D). Some components of the glycolysis/
gluconeogenesis pathway differed between groups. For 
example, hexokinase 2 (HK2) was consistently upregu-
lated in IL_F1 (Fig. 6E). In addition, LDHA, CTSC, and 
FABP5 showed significant differences as key elements 
in propanoate metabolism, lysosomes, and PPAR signal-
ing pathways at the transcriptomic and proteomic levels 
(Fig. 6F–H).

Inhibition of LDHA induces cell death in chicken follicles
Both transcriptomic and proteomic analyses dem-
onstrated that LDHA was significantly upregulated 
in the IL_F1 group compared to that in the CL_F1 
group (Fig.  6G). The expression levels of LDHA mRNA 
(Fig. 7A) and protein (Fig. 4D, E) were consistent with the 
results of omics data. LDHA is the main functional sub-
unit of LDH, which is a glycolytic rate-limiting enzyme. 
After adding FX-11, a specific inhibitor of LDHA, to cul-
tured chicken primary GCs, we found that the enzymatic 
activity of LDH decreased in GCs in a dose-dependent 
manner (Fig.  7B); 5  μmol/L of FX-11 was selected for 
subsequent experiments. LDHA reduction significantly 
inhibited the viability of GCs (Fig. 7C) and increased GC 
death, which was characterized by increased labeling 
of annexin V and propidium iodide (Fig.  7D). To verify 
whether the inhibition of LDHA in GCs had an impact 
on TCs, we cultured TCs with GCs for 24 h using a Tran-
swell co-culture system (Fig.  7E). The viability of TCs 
decreased significantly, and the number of late apoptotic 
cells increased significantly (Fig. 7F, G).

Discussion
Egg production performance is an important economic 
trait in chickens. To improve the production perfor-
mance of laying hens, many studies have investigated cel-
lular processes during ovarian follicle development [8, 9]. 
Here, we integrated transcriptome and proteome data 
to reveal the molecular mechanisms underlying chicken 
ovulation and comprehensively compared key genes 
and metabolic pathways between CL and IL hens. We 
observed a clear difference in the frequency of egg-laying 
within each population, which could reflect differences in 
the ability of hens to ovulate and subsequently affect egg 
production. These results elucidate the dynamic expres-
sion profile and potential regulatory network chicken 
ovulation.

Zona pellucida family, as a major component of the PVM, 
provides strong mechanical regulation of F1 in CL hens
Birds are oviparous vertebrates, characterized by much 
larger egg sizes than in viviparous vertebrates [50]. In 
chickens, the largest preovulatory follicle (F1) ruptures 
from the left ovary and enters the oviduct; the oocyte 
is then wrapped in the albumin and shell during a long 
oviduct journey [51]. A membrane structure with glyco-
protein components surrounds the oocyte, known as the 
perivitelline layer or PVM [52]. The PVM not only plays a 
role in sperm binding for successful fertilization but also 
physically protects the large oocyte, including the mass 
of yolk, in the gravity field [50, 53]. The main constitu-
ents of PVM are members of the ZP glycoprotein family. 
Over the past few decades, various members of this gly-
coprotein family have been identified, such as zona pellu-
cida glycoprotein 1 (ZP1), ZP2, ZP3, ZP4, and ZPD (also 
known as UMOD) [50, 54–56].

In this study, ZP3 and UMOD were downregulated at 
the mRNA level in the F1 samples of IL chickens com-
pared to those of CL chickens. This suggests that the 
PVM structure in CL chickens is sufficiently robust to 
physically protect the oocyte from breaking during ovu-
lation. However, the thinner PVM of the IL chicken egg 
was insufficiently robust, resulting in the suspension of 
ovulation. ZP family members have various synthetic 
pathways. Both ZP3 (Fig. 1D) and UMOD (Fig. 2H) were 
exclusively expressed in the GC layer [50, 57, 58]. Thus, 
the GC layer plays an important role in the process of 
chicken ovulation.

Sufficient progesterone may contribute to ovulation in CL 
hens
Various steroid hormones, such as progesterone, estro-
gen, and androgens, play a role in chicken follicle growth 
and development [59]. In this study, the expression 
of the progesterone synthesis-related genes HSD3B1, 
CYP11A1, and STAR​ declined significantly in the F1 of IL 
chickens, suggesting that progesterone deficiency occurs 
during the suspension of ovulation (Fig.  2H). In 1987, 
Tanaka et  al. designed an in  vitro perfusion device and 
demonstrated the importance of progesterone in ovula-
tion, which increased the ovulation rate to 80% in domes-
tic fowl (compared with 0 in the control group) [60]. 
In  vivo, the steroid biosynthetic blocker aminogluteth-
imide phosphate can prevent an increase in progesterone 
concentration and inhibit ovulation induced by LH [61]. 
These results confirm that progesterone may act directly 
on ovulation in chickens.

Progesterone plays an important role in the regulation 
of follicular maturation, ovulation, and oviposition in 
domestic hens via the progesterone receptor (PGR) [62]. 
PGR is a nuclear receptor transcription factor present 
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in TCs, GCs, and germinal epithelial cells, suggesting 
that these tissues are targets of progesterone in ovula-
tion regulation [62, 63]. Moreover, in  vitro and in  vivo 
assays showed that PGR mediates progesterone-induced 
ovulatory processes in macaques [64]. Similar results 
were obtained in experiments using mice [65]. In this 
study, LHCGR​ (the receptor of LH) mRNA was highly 
expressed in the F1 of CL chickens (Additional file  4), 
and LH and progesterone secretion were induced by 
positive feedback [66]. Therefore, we propose that a pro-
gesterone deficiency inhibits the feedback loop between 
LH and progesterone, which disrupts biochemical events 

controlled by PGR, such as the synthesis of enzymes that 
degrade the follicle wall, finally leading to the suspension 
of ovulation in laying hens.

Proteases play a role in chicken ovulation
During the complex process of chicken ovulation, in addi-
tion to the establishment of PVM mechanical support 
and the LH/progesterone surge, tissue degradation of the 
stigma region is equally important for rupturing the preo-
vulatory follicle [67, 68]. Proteases are involved in the deg-
radation of collagen fibers and proteoglycans in chicken 
follicle walls [69]. Plasminogen is a fibrinolytic protease of 

Fig. 7  Inhibition of LDHA induces cell death in chicken ovarian follicles. A Expression levels of LDHA mRNA in CL_F1 and IL_F1. B Enzymatic activity 
of LDH in granulosa cells (GCs) treated with FX-11. C CCK8 assay of chicken GCs treated with FX-11 and the control at 0, 6, 12, 24, and 48 h. D 
Apoptosis rates of GCs after FX-11 treatment were assessed by flow cytometry. E Schematic diagram of the Transwell co-cultured system, with theca 
cells (TCs) seeded in the inserts and GCs seeded in culture plates. F CCK8 assay of TCs 24 h after co-culturing with GCs treated with FX-11. G 
Apoptosis rates of TCs 24 h after co-culturing with GCs treated with FX-11. *P < 0.05, **P < 0.01, ***P < 0.001
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the fibrinolytic system that can be activated by the urok-
inase-type plasminogen activator (PLAU) and tissue-type 
plasminogen activator (PLAT) [70]. In our study, PLAU 
was significantly downregulated specifically in the CL_F1 
vs. IL_F1 comparison (Additional file  4), whereas PLAT 
was not identified as a DEG, suggesting that PLAU plays 
an important role in degradation of the follicle wall during 
the chicken ovulatory process. As a serine protease, PLAU 
is produced by the granulosa layer and is dependent on 
stimulation by the theca layer in hens [71].

Lysosomes are key degradative compartments of the 
cell. They not only degrade proteins but are also involved 
in membrane repair and other cellular processes [72]. 
Among lysosomal hydrolases, cathepsins play a major 
role as proteases [73]. They are a superfamily containing 
cathepsin A (serine), B, C, H, and O (cysteine), or D and 
E (aspartate) [74], each of which has various functions. 
CTSA expression is higher in carcinoma tissues and 
may participate in extracellular matrix degradation [75]. 
In our study, CTSA mRNA was significantly reduced in 
IL_F1 cells (Fig.  2H), which may explain abnormalities 
in ovulation. Jin et al. found that CTSD levels decreased 
significantly in the ovaries of patients with PCOS [76], 
which is consistent with the regulatory mode of CTSA 
in IL chickens. Other members of the cathepsin fam-
ily, CTSH and CTSC, were both highly expressed in IL_
F1 cells (Fig.  5C), contrary to the expression pattern of 
CTSA. Research on CTSH and CTSC in the process of 
follicular development is limited; therefore, more experi-
ments are required to determine the role of these genes 
in the suspension of ovulation. We speculate that these 
two genes may reduce the sensitivity of follicles to PGR, 
eventually leading to intermittent ovulation in chickens.

Excessive glycolysis metabolism in IL_F1
During follicle development and ovulation, a large sup-
ply of adenosine triphosphate is produced via oxidative 
phosphorylation in the mitochondria to ensure sufficient 
energy provision [77]. Similarly, glucose is an essential 
energy source for animals [78]. To provide a substrate for 
energy metabolism in oocytes, glucose is first converted to 
pyruvate through glycolysis in GCs, and pyruvate is trans-
ported to the mitochondria of oocytes through the mono-
carboxylic acid cycle [77]. Our proteomics analysis revealed 
that DAPs were enriched in the oxidative phosphorylation 
pathway (Fig. 5B), and the DAPs involved in this pathway 
were highly expressed in IL_F1 (Fig. 5C). More specifically, 
HK2 and LDHA, both glycolytic rate-limiting enzymes, 
were upregulated in IL_F1, as shown in both transcrip-
tomic and proteomic analyses (Fig. 6E and 6G), indicating 
that glycolysis and pyruvate metabolism were enhanced in 
IL_F1. When a follicle is about to undergo ovulation, the 

membrane tissue of CL_F1 will be degraded, so that the 
energy metabolism in follicle is weakened or suspended. In 
addition, we speculate that energy metabolism did not stop 
at the correct time before ovulation in IL_F1, which may 
have reduced follicle sensitivity to ovulation signals.

Many human cancers show higher LDHA levels than 
those in normal tissues [79, 80]. LDHA is encoded by 
a target gene of c-Myc, an oncogenic transcription fac-
tor, and hypoxia-inducible factor (HIF-1) [81]. c-Myc can 
directly increase the LDHA expression level by transac-
tivating the LDHA promoter [82]. As a critical transcrip-
tion factor in hypoxic adaptation, HIF-1 can bind to the 
LDHA sequence of the promoter [83]. Although hypoxia 
is commonly present in tumors, the relationship between 
hypoxia and suspended ovulation in hens is poorly under-
stood. Here, we report that the inhibition of LDHA activity 
led to decreased cell viability and increased apoptosis on 
cultured GCs, as well as significantly decreased viability in 
co-cultured TCs, which may be attributed to intercellular 
communication. These results suggest that excessive glyco-
lysis in F1 of IL hens with suspended ovulation is caused 
by the abnormal upregulation of rate-limiting enzymes in 
the glycolytic pathway. Therefore, restoring lower levels of 
glycolysis may be key to promoting ovulation in chickens.

Conclusions
In this study, we analyzed differences in the F1 and POF 
of continuous and intermittent laying chickens through 
combined transcriptome and proteome analyses, thereby 
revealing the important biochemical events involved in 
ovulation. The synthesis of PVM with sufficient mechani-
cal strength, progesterone secretion, protease degradation 
of the follicle wall, and energy metabolism suspended at 
the appropriate time point contribute to follicle ovu-
lation in CL hens. ZP3, CYP11A1, PLAU, CTSA, and 
LDHA play vital roles during different phases of chicken 
ovulation. The inhibition of LDHA promotes cell apop-
tosis and decreases the viability of GCs and TCs, which 
might promote ovulation. To the best of our knowledge, 
our findings provide the first overview of the dynamic 
expression profile and regulatory network in chicken fol-
licle ovulation. Therefore, this research not only extends 
the spectrum of relevant genes but also provides a deeper 
understanding of the ovulation process in poultry.
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