
Gao et al. 
Journal of Animal Science and Biotechnology           (2024) 15:60  
https://doi.org/10.1186/s40104-024-01016-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Animal Science and
Biotechnology

Exploring the dynamic three‑dimensional 
chromatin architecture and transcriptional 
landscape in goose liver tissues underlying 
metabolic adaptations induced by a high‑fat 
diet
Guangliang Gao1,2, Rui Liu1, Silu Hu1, Mengnan He1, Jiaman Zhang1, Dengfeng Gao1, Jing Li1, Jiwei Hu1, 
Jiwen Wang1, Qigui Wang2, Mingzhou Li1* and Long Jin1* 

Abstract 

Background  Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting 
in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As 
a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. 
Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression 
and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization 
during fat deposition in goose liver tissues still need to be fully comprehended.

Results  In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content 
following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Addition-
ally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-
resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying 
H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring 
of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions 
between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted 
by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes 
that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition 
and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species 
analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver 
compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat 
deposition and hepatic fat regulation in geese under conditions of excessive energy intake.
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Conclusions  We examined the dynamic modifications in three-dimensional chromatin architecture and gene 
expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. 
Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel per-
spective for investigating mammal liver diseases.

Keywords  Compartment A/B, Goose fatty liver, Promoter-enhancer interactions, Regulation of gene expression, 
Three-dimensional chromatin architectures, Tolerance hepatic steatosis, Topological domains

Background
High-fat diet (HFD) disrupt lipid metabolism in 
humans and mammals, leading to liver conditions such 
as fatty liver, hepatic steatosis, cirrhosis, and liver can-
cer [1]. Conversely, geese demonstrate an extraordi-
nary physiological capacity to withstand significant fat 
accumulation caused by HFD without experiencing 
the usual inflammatory and fibrotic reactions observed 
in humans and mammals [2–6]. Notably, this capac-
ity is reversible; halting the HFD enables the liver of a 
goose to revert to its original condition, illustrating its 
remarkable ability to resist the liver damage typically 
induced by high-fat consumption [7]. These character-
istics highlight the distinct capacity for lipid deposition 
and hepatic steatosis tolerance observed in goose livers. 
During short-term HFD (approximately two to three 
weeks), lipid deposition exceeds β-oxidation, resulting 
in goose fatty liver formation and increased lipid accu-
mulation [4, 8, 9].

Integrating multiple omics datasets provides a com-
prehensive approach to investigating mechanisms 
underlying lipid protection in goose liver. By utilizing 
the goose genome sequence, transcriptomics, epig-
enomics, proteomics, gut microbiota metagenomics, 
and metabolomics, we deepened our understanding of 
the intricate interactions among different omics levels, 
contributing to our comprehension of lipid metabo-
lism regulation in geese [4, 9–12]. Studies on the goose 
genome sequence revealed positive selection-induced 
deletion of the goose leptin gene, triggering the devel-
opment of liver mechanisms for energy storage and 
tolerance to severe hepatic steatosis [4]. Recent inves-
tigations using transcriptomics, proteomics, and gut 
microbiota metagenomics identified numerous genes 
involved in fat synthesis, lipoprotein transport, fatty 
acid oxidation, endoplasmic reticulum stress, insulin 
resistance, hepatocyte growth, and proliferation [9, 13]. 
Previous studies have elucidated the protective effects 
of adiponectin and its receptors, as well as components 
such as Complement 3 (C3), Complement 4 (C4), Com-
plement 5 (C5), and intestinal microbes, on goose liv-
ers exposed to HFD [9]. Additionally, our laboratory 
utilized RNA sequencing data (RNA-Seq) to analyze 
essential candidate genes, including stearoyl-coenzyme 

A desaturase (SCD), fatty acid desaturase 1 (FADS1), 
and apolipoprotein B (APOB), studying the dynamic 
response to high energy intake [14].

The  high-throughput chromosome conformation cap-
ture (Hi-C) technology is potent for examining gene 
expression regulatory mechanisms by exploring spa-
tial interactions among chromosomes across genomes 
[15]. It allows for examining various structural aspects 
of chromosomes [16]. These structural features (Com-
partments, topologically associated domains (TADs), or 
promoter–enhancer interactions (PEIs)) emphasize the 
crucial role of three-dimensional changes in gene expres-
sion. Hi-C has been used to aid in genome assembly, 
construct whole-genome haplotypes in mammals, com-
pare chromatin interactions between different cells or 
species, explore resulting differences in gene expression, 
and investigate developmental patterns and mechanisms 
of complex diseases [17]. For example, previous studies 
have successfully generated three-dimensional chroma-
tin structure maps for porcine cells, enabling real-time 
tracking of chromatin spatial structure reprogramming 
during early embryonic development [18]. Investigations 
have also focused on the early developmental processes 
of the porcine liver [19].

Additionally, researchers have leveraged the latest por-
cine reference genome and performed de novo assembly 
of genomes from 11 geographically and phenotypically 
diverse pig breeds worldwide, establishing a comprehen-
sive pan-genome for pigs, enhancing our understanding 
of genetic variations among breeds and facilitating in-
depth exploration of the molecular mechanisms that gov-
ern transcriptional regulation of pork quality traits [20]. 
Moreover, Hi-C has been instrumental in reconstruct-
ing porcine adipose tissue’s three-dimensional genomic 
spatial structure, providing fundamental data and theo-
retical support for advancements in molecular genetic 
breeding [21]. Similar research endeavors have been con-
ducted in various livestock species, including chickens 
[22], ducks [23], and model organisms such as mice [24] 
and zebrafish [25]. However, the potential application of 
Hi-C technology in studying important economic traits 
or developmental processes in geese remains largely 
unexplored. In our laboratory, we constructed a refer-
ence genome for geese at the chromosome level, which 
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serves as a solid foundation for investigating how chro-
matin spatially regulates gene expression in goose livers 
[13]. The mouse model is widely recognized as a highly 
relevant biomedical model for studying gene expression 
regulation. Previous studies have provided compelling 
evidence demonstrating that mouse livers’ gene expres-
sion and dynamic chromatin interactions respond to an 
HFD [26, 27].

This study aims to explore the unique genetic mecha-
nisms that enable goose livers to adapt to HFD-induced 
hepatic steatosis while avoiding the adverse effects com-
monly observed in mammals. By employing compre-
hensive multi-omics analyses, including Hi-C, ChIP-seq 
(histone H3K27ac), and RNA-Seq, we investigated the 
impact of HFD on the spatial conformation of chromo-
somes and gene expression in goose liver tissues. Addi-
tionally, conducting a cross-species comparative analysis 
with mice, focusing on one-to-one orthologous genes 
provides a comprehensive understanding of the adaptive 
responses to dietary stress in goose livers compared to 
other species. This study accentuates the potential par-
allels and distinctions between geese and mice in their 
physiological adaptability to the stressors introduced by 
HFD, offering novel insights into regulating fat deposi-
tion and hepatic fat management in response to excessive 
energy consumption.

Methods
Experimental animals
In a previous study [14], our lab collected normal and 
HFD-induced goose fatty liver tissues. The geese were 
kept in the same environment, provided with water, and 
fed the same diet. However, for the HFD group, a basic 
diet supplemented with the HFD was administered for 
18 d [14]. Following the short-term feeding experiments, 
the entire cohort of geese subjects underwent euthana-
sia, and their respective liver tissues were meticulously 
collected, promptly subjected to flash-freezing in liquid 
nitrogen, and subsequently stored at –80 °C, all in prepa-
ration for subsequent assays.

A total of 200 female Kunming mice were obtained 
from the Animal Research Institute of the Sichuan Pro-
vincial People’s Hospital to generate the HFD-induced 
obese mouse model. In this study, the mice were ran-
domly assigned to an HFD group consisting of 100 indi-
viduals (17.74 MJ/kg metabolizable energy, 11.26% crude 
protein, 6.8% fat, and 5% lysine) and a normal diet group 
consisting of 100 individuals (13.88 MJ/kg metabolizable 
energy, 15.37% crude protein, 2% fat, and 6.7% lysine). 
Under normal conditions, all mice were granted ad  libi-
tum access to food and water. Following a 16-week inter-
val, a 12-h fasting period was instituted before the mice 
were sacrificed. Subsequently, a portion of the liver and 

diverse tissues were obtained from the mice, rapidly 
frozen in liquid nitrogen, and stored at –80  °C for sub-
sequent experiments. Concurrently, the remaining liver 
tissues were submerged in 10% formalin and paraffin 
wax, undergoing subsequent dehydration and embedding 
in paraffin. The preparation procedures strictly adhered 
to the manufacturer’s guidelines, and the specimens were 
subjected to staining using Hematoxylin and Eosin Stain-
ing Kits (C0107/C0109, Beyotime, Shanghai, China).

In situ Hi‑C library generation
A total of 10 geese (consisting of 5 HFD and 5 normal diet 
individuals) and 10 mice (including 5 HFD and 5 normal 
diet individuals) were chosen based on criteria that con-
sidered both liver weight and liver index. Individual Hi-C 
libraries were subsequently constructed for these 20 tis-
sues [28]. The Hi-C libraries underwent an initial ampli-
fication of 8–10 cycles using a KAPA Hyper Prep Kit 
(Roche, KK8504, Wilmington, NC, USA) and were sub-
sequently sequenced on the BGISEQ-500 platform.

ChIP‑Seq library generation
We conducted H3K27ac ChIP-seq following a protocol 
previously described for both geese and mice liver tissues 
[29]. Initially, we cross-linked 3–5 g of samples with DNA 
by treating them with formaldehyde at a final concentra-
tion of 1%. Following the initial cross-linking, the sam-
ples underwent two washes in cold phosphate-buffered 
saline buffer and two additional washes in cold water. We 
fragmented the chromatin using a sonicator to achieve 
DNA lengths between 200 and 500  bp. Throughout the 
procedure, we preserved the DNA input at –20  °C. We 
separated the soluble chromatin from the input DNA and 
performed immunoprecipitation using specific antibod-
ies for H3K27ac (ab4729, Abcam, Cambridge, United 
Kingdom). Finally, we constructed sequencing libraries 
that were subsequently sequenced on the Illumina HiSeq 
X Ten platform.

RNA extraction and RNA‑seq library generation
RNA-seq data was generated for the 10 geese (5 HFD 
and 5 normal) and 10 mice (5 HFD and 5 normal) liver 
tissues used in Hi-C sequencing, including the RNA-
Seq data of four geese (GSE119421) published in prior 
studies [14]. RNA extraction was conducted, involv-
ing the application of the Ribo-ZeroTM rRNA Removal 
Kit (RZH1046, Epicentre, Wisconsin, USA) to eliminate 
ribosomal RNA, and the subsequent purification of ribo-
some-free RNA through ethanol precipitation. Following 
this, the RNA underwent fragmentation using divalent 
cations in the NEBNext® First Strand Synthesis Reaction 
Buffer (E7420S, NEB, Ipswich, MA, United States) (5×) at 
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elevated temperatures. Ultimately, RNAseq libraries were 
constructed from the extracted ribosomal RNA (rRNA) 
and sequenced using the Illumina HiSeq X Ten platform.

Hi‑C data analysis
After eliminating low-quality nucleotides, contaminants, 
and adapter sequences, the high-quality Hi-C data from 
both the goose and mouse were aligned to the goose 
(ASM1303099v1 version) and mouse (mm39 version) ref-
erence genomes using the Juicer software [30]. Based on 
Knight-Ruiz and quantile algorithms, we generated con-
tact matrices of various resolutions (100, 20, and 5  kb) 
and normalized matrices. The reproducibility evaluation 
in contact intrachromosomal matrices for both goose 
and mouse was conducted using the HiCRep software 
with default parameters [31].

We applied VNE to quantify the order in chromatin 
structure (100-kb resolution), provided that higher entropy 
corresponds to higher disease severity [32]. Principally, the 
correlation matrix is calculated as follows: C = corr(log2[A]) 
(A: Hi-C matrix of each autosome). Furthermore, the eigen 
decomposition of matrix C is computed, where λ1 ≤ λi ≤ λn 
are the eigenvalues of C, and the eigenvalues are normal-
ized as follows  :�i = �i∑

n

j=1
�j

 . Finally, VNE is computed as 
follows: VNE = −

n

i=1
�iln(�i).

Identification of Compartments A/B
At a 20-kb resolution, principal component analysis was 
performed on matrices, generating PC1 vectors for each 
chromosome in every sample. Subsequently, Spearman’s 
correlation between PC1 and genomic characteristics 
was calculated. Referred to as Compartment A were bins 
demonstrating a positive Spearman’s correlation, while 
those exhibiting a negative correlation were defined as 
Compartment B. The A-B index, representing the likeli-
hood of genomic segment interdependence with either 
Compartment A or B, was estimated at a resolution of 
20  kb. These definitions are based on the previously 
described 100 kb resolution. Based on the 20-kb resolu-
tion matrices, we identified the Compartments A/B using 
this method [33].

Topologically associated domains (TADs)
By subtracting or adding ten bins from the center of each 
bin, the directionality index (DI) was initially calculated 
with a resolution of 20  kb. Further, the hidden Markov 
model was used to determine the state of DI at the TAD 
border. Upon identifying the large TAD using DI, we 
employed the minimal insulation score (IS) and its nor-
malized IS vector to partition the large TAD into smaller 
TADs [32]. To further determine whether the HFD induced 
changes in TAD and TAD boundaries, we assessed the 

TAD structures of the goose genomes at a resolution of 
20 kb using the DI [34] and the IS [35] algorithms.

Analysis of promoter–enhancer interactions (PEIs) 
for genes
A 5-kb resolution contact matrix was generated by pool-
ing Hi-C reads from five biology replicates to identify 
PEIs in goose and mouse. We identified overrepresented 
interactions within the promoter region PSYCHIC soft-
ware [32, 36]. Applying the PSYCHIC algorithm to their 
ultra-deep Hi-C contact maps, we utilized it to identify a 
repertoire of long-range PEIs at a resolution of 5 kb [32]. 
We retained PEIs with false discovery rates (FDRs) < 0.05 
and interaction distances < 20 kb. A regulatory potential 
score (RPS) was calculated for each gene to understand 
dynamical rewiring better. The RPS was calculated as ∑n 
(log10 In), which indicates the normalized interaction 
intensity (observed value − expected value). An enhancer 
without promoter interaction indicates a zero RPS. In 
investigating RPS genes with low RPS, we observed that 
even minimal fluctuations in their expression led to sig-
nificant fold changes (FC). Therefore, to identify mean-
ingful changes, we set the criteria of log2FC > 2 and 
delta > 3.

Analysis of ChIP‑Seq
Mapping the high-quality ChIP-seq data to the goose 
and mouse genomes was achieved using the Burrows-
Wheeler Aligner (BWA) (v 0.7.15) [37]. Subsequently, 
potential PCR duplicates were filtered using Samtools (v 
1.3.1) software [38]. Following merging the bam files of 
biological replicates, we identified H3K27ac (an indicator 
of active enhancers) peaks using the SICER (v 1.1) [39], 
which identifies peaks with a cutoff of FDR-value < 0.05. 
Retaining H3K27ac ChIP-seq peaks from the merged 
sample and at least one biological replicate, we subse-
quently merged and ranked these peaks in neighboring 
enhancer elements (within 12.5  kb) to identify the sig-
nal. The signal strength per 1 kb bin was then calculated 
using a specific formula: log2 (IP FPKM/input FPKM). By 
identifying H3K27-enriched regions by ChIP-Seq analy-
sis, distal interaction regions distant from the promoter 
were classified as poised enhancers (PE), regular enhanc-
ers (RE), or super-enhancers (SE) using the standard 
Rank Ordering of Super-Enhancers (ROSE) algorithm 
[40]. The data were further visualized using the Integra-
tive Genomics Viewer (version 2.12.2) browser [41].

Analysis of RNA‑seq data
We removed the adaptors, low-quality sequences, and 
sequences of < 50 bases using an in-house pipeline and 
then mapped the RNA-Seq data to goose and mouse 
genome sequences following the standard RNA-Seq 
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pipeline parameters of ENCODE using STAR (version 
2.7.0c) software [42]. Transcripts for each library were 
filtered based on length (250  bp), FPMK expression 
level (0.1), clipped exons (15 bp), and background noise 
reduction using the Assemblyline. We merged all filtered 
libraries, compared them with reference annotation, and 
removed transcripts annotated as protein-coding genes 
(PCGs). The differential gene expression analysis between 
groups was calculated using edgeR software (v 3.22.5) 
[43]. To identify the differential expression genes, thresh-
old values of FDR < 0.05 and |log2FC|≥ 1.5 were used as 
cutoff values for the analysis. To create RNA-Seq signal 
graphs, Samtools was used to analyze BAM files and 
determine read numbers for each window, and the data 
were further visualized using the Integrative Genomics 
Viewer (version 2.12.2) browser [41].

Cross‑species network analysis
We used the OrthoMCL software [44] to compare the 
orthologous genes between goose and mouse. Subse-
quently, only the single-copy orthologous genes shared 
between the two species were selected for further 
analysis.

Results
Dynamic chromatin architecture and transcriptome 
induced by HFD in goose liver tissues
Feeding an HFD for 18 d resulted in a 37.50% increase in 
goose body weight (normal 4.50  kg, HFD 6.09  kg, fold-
change = 1.38, P = 1.22 × 10–3), the liver index increased 
2.73-fold (normal 1.32%, HFD 3.61%, P = 5.69 × 10–3), and 
the liver content increased 9.15-fold (normal 11.51 mg/g, 
HFD 105.35  mg/g, P = 5.31 × 10–6). The liver from the 
HFD group exhibits substantial yellowing, along with the 
deposition of lipid droplets, compared to the dark red liv-
ers in the normal group [14].

To investigate the effect of HFD on chromatin archi-
tecture and gene expression in goose fatty liver, we col-
lected 10 goose liver samples (5 normal, 5 HFD) to 
generate 10 Hi-C and 10 RNA-seq data. The Hi-C analy-
sis yielded approximately 6.22 billion valid contacts for 
both the HFD and normal diet groups of geese (622.31 
million contacts per library) ( Fig. S1, Table S1). By merg-
ing the intrachromosomal contacts of the HFD and nor-
mal diet groups, we achieved a maximum resolution of 
600 bp (Fig. 1 A–B). At 100-kb resolution, the Hi-C maps 
obtained from the replicates of the HFD and normal diet 
groups showed high reproducibility in geese (Fig.  1C). 
Interestingly, we observed that the whole chromatin 
architecture was stable induced by the HFD (Fig.  1D). 
Moreover, we obtained a total of 143.39 Gb of high-qual-
ity RNA-Seq data from 10 liver tissues. In total, 15,737 
genes exhibited evident expression. Their expression 

levels were found to be highly reproducible within the 
biological replicates (Fig. S2A) and identified 1,361 dif-
ferentially expressed genes (DEGs) between the HFD 
and normal diet groups (Fig. S2B, Table S2). Among the 
DEGs, 865 up-regulated genes involved in various sign-
aling processes, energy production and consumption, 
and metabolic pathways, including the mitotic cell cycle, 
oxidoreductase activity, alpha-amino acid metabolic pro-
cess, and carbon metabolism (Fig. S2C, Table S3). On the 
other hand, 496 DEGs were down-regulated and associ-
ated with pathways related to growth, development, and 
cancer, such as pathways in cancer, as well as responses 
to hormones, including insulin and peptide hormones 
(Fig. S2D, Table S3). The results emphasize the dynamic 
changes in phenotypic traits, chromatin architecture, and 
transcriptome caused by HFD in goose liver tissues.

Compartmentalization A/B switch and the dynamics 
of and TAD boundaries induced by HFD in goose liver 
tissues
We analyzed multivariate entropies utilizing the VNE 
index to investigate the influence of an HFD on the chro-
matin structure within goose liver. Notably, the obser-
vations revealed a substantial variance in VNE values 
between the HFD-induced liver tissues and the normal 
liver tissues (Fig. 1D). This discrepancy strongly suggests 
the presence of a disorganized and more relaxed chro-
matin architecture in geese liver induced by the HFD. 
Based on the 20-kb resolution contact map, we observed 
that Compartment A, characterized by higher GC con-
tent, gene expression, and gene number, exhibited sig-
nificant differences from Compartment B (Fig.  1E–G). 
Additionally, we found that 51.05% and 50.40% of the 
entire genome consisted of Compartment A bins in the 
HFD and normal goose liver, respectively (Fig. 1H). Sub-
sequently, we identified 23.80  Mb (2.42% of the goose 
genome) of compartmental switching between the two 
groups. We found that the rearrangement of compart-
mentalization significantly contributed to the changes 
in gene expression induced by HFD, as measured by the 
abundance of messenger RNA (Fig. 1I). The gene expres-
sion switching induced by HFD exhibited predomi-
nantly unidirectional changes, suggesting an association 
between dynamic compartmentalization and subtle 
alterations in gene expression (Fig. 1I). We observed that 
genes undergoing an A-to-B switch (148 genes, 18 
DEGs) (Fig.  1J, Table S4) were primarily involved in 
"actin cytoskeleton organization" (GO:0030036, 12/538, 
Q = 4.13 × 10–3), and "regulation of cytoskeleton organiza-
tion" (GO:0051493, 9/531, Q = 2.66 × 10–1) (Fig. 1K, Table 
S5). These genes include DEMA (maintaining glucose 
homeostasis), SELENOM (involved in hepatic steatosis, 
inflammation, lipid metabolism, and fatty acid oxidation, 
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is associated with hepatocellular degeneration and car-
cinoma), EDEM3 (controls the uptake of very low-den-
sity lipoprotein and plasma triglycerides), and ABCAA​ 
(involved in lipid metabolism). Specifically, ERRγ modu-
lates the activity of genes associated with energy metabo-
lism, PANX2 (controls glucose tolerance and apoptosis), 

LGR6 (a key component of HCC survival), and CNPase 
(a gene that could have a crucial role in upholding mito-
chondrial function and averting mitochondrial malfunc-
tion) (Fig.  1L, Table S5). Conversely, the genes in the 
dynamic compartmentalization region that experienced a 
switch from B-to-A (123 genes, 11 DEGs) (Fig. 1I, Table 

Fig. 1  Compartmentalization dynamics in goose liver tissues induced by HFD. The goose HFD (A) and normal liver (B) group Hi-C data access 
resolution; C The Heatmaps of the HiCRep correlation coefficients of the goose samples; D Von Neumann entropy (VNE) measures the degree 
of disorder in chromatin structure; The gene number (E), GC content (F) and gene expression (G) of Compartments A and B; H The proportion 
of Compartments A and B in goose genome; I The gene expression of the three types of goose Compartments. The functional analysis of the goose 
genes embedded in regions that experience the B-to-A (J) A-to-B (K)
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S4) were mainly enriched in "carbohydrate derivative 
catabolic process" (GO:1901136, 4/170, P = 9.53 × 10–4, 
typically GLUT8), "glycoprotein biosynthetic process" 
(GO:0009101, 4/266, P = 4.81 × 10–3, NPY1R) (Fig.  1I, 
Table S5). These genes are involved in metabolic pro-
cesses (GLUT8, TAp63, RIMKB and ANR22) and 
immune processes (NPY1R, ACKR3, SPON2, Cause and 
VAT1) (Fig. 1M).

In the goose genome, 2,019 TADs (length 439.02  kb, 
median 400.00  kb) and 1,894 TADs (length 461.93  kb, 
median 404.00 kb) were identified in the HFD and nor-
mal liver tissues, respectively (Fig. 2A). The TAD bound-
aries generated by both algorithms exhibited remarkable 
consistency across biological replicates in TAD contacts 
(Spearman’s r > 0.80) (Fig.  2B). We only found 7 TAD 
boundaries (4/3,409 in HFD, 3/3,408 normal) altered by 
HFD (Fig. 2C, Table S6). The results indicate that within 
the dynamic TAD boundaries in goose liver tissue, there 
was an observed gain in the GK (glycerol kinase) gene. 
In contrast, the PRODH (proline dehydrogenase 1) gene 
experienced a loss at the boundary in response to an 
HFD (Table S6). These observations indicated that the 
goose genome TAD and TAD boundaries were highly 
stable and less affected by the HFD.

The rewiring of PEI in goose liver tissues induced by HFD
Since the spatiotemporal chromatin architecture facili-
tates or constrains PEIs to dynamically regulate gene 
expression, we assembled comprehensive genome-wide 
PEIs in goose liver tissues exposed to an HFD. We identi-
fied 61,679 and 71,576 PEIs in the goose HFD and normal 
liver tissues, respectively, and 35,452 PEIs were shared 
between the two groups (Fig. 3A). By the distribution of 
the H3K27 acetylation (H3K27ac) peaks, enhancers can 
be categorized as SE, RE, or PE (Fig. 3B, C). In the goose 
genome, genes regulated by multiple enhancers demon-
strated a simultaneous increase in transcription, indi-
cating that enhancers affect target genes in an additive 
manner (Fig. 3D, E). To accurately determine the dynamic 
rewiring of PEIs induced by the HFD, we calculated the 
RPS of each gene to examine the regulatory effects of 
multiple enhancers on specific genes. The expression of 
genes exhibiting higher RPS levels was found to be sig-
nificantly elevated compared to genes with lower RPS 
levels (Fig.  3F,  G), indicating that the relative contribu-
tion of each enhancer to a gene’s expression was primar-
ily influenced by its effect divided by the total effect of 
all enhancers. As anticipated, genes associated with SEs 
exhibited markedly higher levels of RPS and gene expres-
sion than genes associated with REs (Fig. 3H, I).

Fig. 2  The boundaries of TADs exhibit significant stability within the goose liver in response to an HFD. A The distribution of TADs in both high-fat 
diet (HFD) and normal goose liver tissues; B The overlapping TAD boundaries between the groups of goose liver tissues exposed to a high-fat diet 
(HFD) and those with normal conditions; C The Spearman’s r heatmap of the insulation score (IS) in goose HFD and normal liver tissues

(See figure on next page.)
Fig. 3  The induction of an HFD leads to the rewiring of PEI in the goose liver. A The common and specific PEI in goose normal and HFD liver; 
Determination of super-enhancers (SEs) by ranking H3K27ac signals using the ROSE algorithm in geese normal (B) and HFD (C) liver tissues; The 
number of enhancers and their impact on gene expression were determined for normal (D) and HFD (E) liver tissues of geese; The RPS value and its 
association with gene expression were examined in normal (F) and HFD (G) liver tissues of geese; The RPS value was investigated in SE, RE, and SE 
regions of normal (H) and HFD (I) liver tissues of geese; The impact of SE, RE, and SE regions on gene expression was analyzed in normal (J) and HFD 
(K) liver tissues of geese. The function and pathway enrichment analyses for the gene increased (L) or decreased (M) significantly RPS in goose HFD 
liver tissues. PEI rewiring of the functional gene CP7A1 (N), E2F1 (O), MIXIP (P), and G6PI (Q)
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Fig. 3  (See legend on previous page.)
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Furthermore, the expression of genes linked to SEs was 
significantly higher than that of genes associated with PEs 
(Fig.  3J, K). These results emphasize enhancers’ essen-
tial and discriminating function governing gene expres-
sion across various activities. To investigate the potential 
impact of extensive rewiring of PEIs, we conducted a 
comparative analysis of RPS for each gene between HFD 
and normal liver tissues in geese. This analysis identified 
genes exhibiting significant differences in RPS, shed-
ding light on the potential mechanisms underlying these 
observed changes.

By integrating the rewiring events of PEIs in geese from 
both the HFD and normal groups, we identified 3,387 
genes with significantly differential RPS (|log2FC|> 3 and 
|Δ|> 2) between HFD and normal conditions. Among 
these, 2,396 genes exhibited a substantial increase in RPS 
in the HFD group, while 991 genes showed a remark-
able increase in the normal group (Table S7). The sig-
nificantly increased RPS in goose HFD was enriched in 
oxidoreductase activity, essential cellular functions (e.g., 
cellular response to DNA damage stimulus, protein local-
ization to organelle, regulation of kinase activity), and 
the control of cell growth and differentiation (e.g., cell 
population proliferation, regulation of neuron apoptotic 
process). In addition, we observed a significant decrease 
in RPS in the goose HFD group. The downregulated RPS 
was overrepresented in categories associated with oxida-
tive stress response, cell population proliferation, cell dif-
ferentiation, and development. Specifically, we observed 
enrichment in epithelial cell differentiation, epithelial 
cell development, endothelial cell development, biologi-
cal regulation, and growth-related processes. These find-
ings suggest that the goose liver undergoes enhanced 
energy consumption processes and experiences various 
disorders due to metabolic stress, leading to altered cell 
growth and differentiation (Fig. 3L, Table S10). Further-
more, our results highlight the central role of the goose 
liver in metabolic homeostasis response to lipid over-
load and its association with diverse disorders caused 
by metabolic stress. Typically, DHB12 and FADS1 (fatty 
acid metabolism), FABP7 and FADS1 (PPAR signaling 
pathway), DHB12 (fatty acid elongation), AKT3 (gluca-
gon signaling pathway and insulin resistance), CP7A1 
(Fig. 3N), E2F1 (NAFLD disease) (Fig. 3O), MIXIP (HCC 
disease) (Fig. 3P) G6PI (Fig. 3Q) and LDHA (glycolysis/
gluconeogenesis) shown more PEIs and were regulated 
by the SE or RE in goose HFD tissues (Table S8). Interest-
ingly, some energy metabolism genes with significantly 
decreased enhancers were regulated by SE or RE, includ-
ing AL7A1 ("Fatty acid degradation" and "Glycerolipid 
metabolism"), PLCA ("Glycerophospholipid metabolism" 
and "Glycerolipid metabolism") and PLIN1 (PPAR signal-
ing pathway) (Fig. 3M, Table S8).

To enhance our comprehension of the rewiring of PEIs 
in response to an HFD in goose liver, we assessed the PRS 
profiles of the liver between goose fed a normal and HFD 
diet. A comprehensive set of six representative candi-
date gene sets, including amino acid metabolism (52 out 
of 241 genes), glucose metabolism (18 out of 84 genes), 
fatty acid metabolism (137 out of 613 genes), tricarbox-
ylic acid cycle (TCA) components (29 out of 41 genes), 
bile acid metabolism (4 out of 30 genes) and drug metab-
olism (19 out of 130 genes) displayed significant increases 
or decreases in RPS of within goose HFD liver tissues. 
Interestingly, genes with increased RPS in goose HFD 
liver tissues included NQO1 (amino acid metabolism), 
FADS1, FADS2 (fatty acid metabolism), G6PI, HGF (glu-
cose metabolism), ACS2L, and FAS (glucose metabolism 
and tricarboxylic acid cycle). All of these genes showed 
that the 3D genome regulated the genes involved in the 
metabolism.

To gain insight into the genomic reorganization 
response associated with metabolic adaptation in geese, 
we comprehensively analyzed alterations in RPS profiles 
for distinct gene sets, encompassing immunity, HCC, and 
NAFLD. Interestingly, among the 44 immunity-related 
genes, we identified five genes that exhibited noteworthy 
changes. Our investigation of HCC signatures revealed 
that nine genes were associated with the less aggressive 
HCC subtype (S-I, good prognosis, BODG, and ABCA5). 
Furthermore, our analysis indicated a decrease in the 
expression of four genes within the same HCC subtype 
(S-II), typically involving pivotal genes, such as HNF4α 
and HNF1α. A significant subset of the 68 signature genes 
displayed predominantly heightened RPS, especially con-
cerning the more aggressive HCC subtype (S-III) associ-
ated with a poorer prognosis. Remarkably, key genes such 
as CATC​ and IKBE were prominently enriched within 
this subset. Among the 126 genes implicated in NAFLD 
(ko04932), 23 genes demonstrated significant RPS modi-
fications between the compared groups, including the 
key genes BID, IGF1R, and INS. These findings indicate 
potential regulatory functions for the genes involved in 
immunity, HCC, and NAFLD, underscoring their puta-
tive roles in the intricate processes governing these bio-
logical phenomena.

Chromatin architecture changes in the mouse liver 
in response to HFD‑induced obesity
We employed the mammalian biomedical model mouse 
as the experimental model to investigate the distinctive 
characteristics of goose livers in response to excessive 
energy intake and compare them with their mammalian 
counterparts. The mice were fed an HFD for 112 d until 
their weight gain plateaued without further significant 
increase (Fig.  4A). Interestingly, the goose gained more 
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body weight (goose 37.5% vs. mouse 20.62%), liver weight 
(goose 3.82 vs. mouse 2.20), liver index (goose 2.73 vs. 
mouse 1.85), and TG content of liver tissues (9.15 vs. 
4.26) on an HFD than the mouse. Moreover, a notable 
rise in serum concentrations of ALT, AST, GGT, CHOL, 
HDL-CH, and LDL-CH (Fig. 4B, C), indicated potential 

liver dysfunction and altered lipid metabolism due to 
the HFD. Additionally, histological staining using hema-
toxylin and eosin (HE) demonstrated the accumulation of 
intracellular lipids, ballooning, and inflammation in the 
liver (Fig. 4D). In conclusion, this prolonged exposure to 

Fig. 4  HFD altered mouse liver tissue weight, blood, gene expression, and liver Compartments. A The mice were exposed to an HFD for 112 d, 
and their weight gain reached a plateau without any further significant increase. This prolonged exposure to the HFD led to the development 
of an inflammatory physiological state in the mice, as evidenced by a significant increase in serum levels (B, C). D The HE staining demonstrated 
the accumulation of intracellular lipids, ballooning, and signs of inflammation. E The differentially expressed genes (DEGs) in the liver of mice 
exposed to a high-fat diet (HFD) compared to a normal diet. F The gene expression of the three types of mouse Compartments. The gene 
enrichment analysis was conducted to investigate the functional characteristics of the genes located in regions that undergo the transition 
from state B to state A (G) and from state A to state B (H)
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the HFD induced an inflammatory physiological state in 
the mouse.

To explore the characteristics of chromatin structure 
and gene expression in the mouse liver induced by the 
HFD, we selected 10 liver tissues (5 HFD and 5 normal) 
to perform the Hi-C and RNA-seq sequencing. In the 
mouse liver tissues of the HDF and normal diet groups, 
we obtained 132.06 Gb of clean RNA-Seq data (13.21 Gb 
per sample) (Table S9). We identified a total of 1,483 dif-
ferentially expressed genes (DEGs) between the HDF 
and normal groups, meeting the criteria of FDR < 0.05 
and |log2FC|> 1.5 (Fig. 4E, Table S10). For the 3D mouse 
genome, the mouse HFD and normal diet groups yielded 
about 6.16 billion valid contacts (615.55 million contacts 
per library) (Fig. S3, Table S11), and the intrachromo-
somal contacts were merged to achieve a maximum res-
olution of 2,000  bp in the mouse (Fig. S4). In mice, the 
maps obtained from replications of HFD or normal diet 
groups of geese were highly reproducible at 100 kb reso-
lution (Fig. S4).

At the compartmental level, the genes embedded in 
A-to-B switched regions (63 genes, 14 DEGs) (Fig.  4F, 
Table S12). A switch from B-to-A was experienced by 81 
genes within the dynamic compartmentalization region 
(1.20%) (Fig.  4F, Table S12). Interestingly, the DEGs 
within dynamically compartmentalized regions shift 
from a B-to-A state, displaying significant enrichment 
in processes related to inflammation and signaling path-
ways (Fig. 4G, H). At the TAD level, we identified 4,480 
TADs (length 460,498 bp, median 400,001 bp) in normal 
groups and 4,511 TADs (length 458,366.6  bp, median 
400,001 bp) which were highly reproducible within bio-
logical replicates in TAD contact (Spearman’s r > 0.80) 
(Fig. S5, S6). We identified 14 TAD boundaries with 13 
genes in the normal diet group and 20 TAD boundaries 
with 19 genes in the HFD group (Table S13). Most of the 
genes identified in the normal group are predicted genes, 
and limited studies have been conducted on these genes, 
namely DEFA36, MUP17, PRAMEL35, VMN1R122, and 
DEFA33. The observed phenomenon is attributed to the 
inherent stability and organization of the genome’s TAD 
chromosome architecture in both goose and mouse liver 
tissues, which appears resistant to an HFD effect. Con-
sistent with the findings in the goose genome, the influ-
ence of enhancers or RPS on target genes follows an 

additive pattern (Fig.  5A–D). At the PEI level, we iden-
tified 1,124 significantly different PEIs with 203 DEGs 
between mouse HFD and normal liver tissue (|log2FC|> 3, 
|Δ|> 2) accompanied by changes in enhancer activity 
(Fig. 5E, F, Table S14). Similar to the functional analysis 
of the DEGs (Table S15), the genes within the dynamic 
compartmentalization region switch from B-to-A (Table 
S16), and the genes were significantly enriched in the 
process involved in the inflammatory and signal pro-
cesses (Table S17).

Evolutionary divergence of local spatial context in goose 
liver tissues
We investigated the genes with significantly different RPS 
diverges between the two species. To this end, we used 
OrthoMCL software to identify conserved and species-
specific variations induced by HFD. Of the 6,988 identi-
fied one-to-one orthologous correspondence between 
the goose and mouse, we found that 1,919 genes (27.88%) 
define an orthologous set of genes regulated by Com-
partments or PEIs shared by the two species. Among the 
regulated genes, a substantial proportion showed spe-
cies-specific regulation, with 1,467 genes (76.45%) being 
goose-specific and 325 genes (16.94%) being mouse-
specific, regulated by Compartments or PEIs. Addition-
ally, 124 genes (6.46%) were shared between goose and 
mouse, regulated by PEIs in either species (Table S18).

To gain insights into the distinctive characteristics 
of lipid deposition capacity and the liver’s tolerance to 
hepatic steatosis, we specifically examined the subset of 
1,467 genes regulated by the unique 3D genome archi-
tectures in geese. The goose-specific genes were enriched 
in the process “metabolic pathways” (Fig. 5G, Table S19), 
including "fat digestion and absorption (6 genes; typi-
cally, APOA4)", " cholesterol metabolism (7 genes; typi-
cally, APOC3, CYP7A1)", "PPAR signaling pathway (7 
genes; typically, FABP2, FABP6, and FABP7)", and "oxi-
dative phosphorylation (14 genes; typically, NDUFA5, 
NDUFB10, NDUFB6, NDUFS8, and NDUFV1)", indicat-
ing that goose fat metabolism differs from that of mouse. 
The goose-specific genes were enriched in the process 
"Pathways in cancer", including Insulin resistance (6 
genes; typically, MLXIP), Nonalcoholic fatty liver disease 
(10 genes; typically, NDUFB10 and MLXIP), HCC (11 
genes; typically, IGF2 and E2F1); NF-kappa B signaling 

(See figure on next page.)
Fig. 5  The effect of HFD on TAD and PEI changes in mouse liver tissues. The study investigated the determination of enhancer quantity and their 
effects on gene expression in mouse liver tissues under two conditions: normal (A) and high-fat diet (HFD) (B). Additionally, the examination 
of RPS value and its correlation with gene expression was carried out in mice’s normal (C) and HFD (D) liver tissues. Moreover, identifying shared 
and distinct TAD boundaries (E) and exploring PEI (F) were conducted in normal and HFD mouse liver tissues. G Gene functional analysis 
of goose-specific genes
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Fig. 5  (See legend on previous page.)
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pathway (12 genes; typically, LY96). These findings func-
tionally explain the unique regulatory mechanisms of 
goose liver in response to HFD.

Of particular interest is the observation that of the 
cohort of 127 shared genes, 54 exhibited contrary regula-
tory trends in the context of three-dimensional genomic 
structural modulation. These genes predominantly con-
gregate within functional categories such as amide bio-
synthetic processes (GO:0043604), including ASAH1, 
ST8SIA4, RNF14, RSL24D1, and MRPL16. Addition-
ally, they manifest a presence within the oxidoreductase 
complex and cytokine binding (GO:1990204), involving 
constituents such as NCF4, NDUFA8, WDR93, MRPL16, 
SLC25A29, and PLIN1, as well as cytokine binding 
(GO:0019955) instances, encompassing entities such as 
CNTFR, CHRDL2, and IL20RA. Notably, these genes reg-
ulate diverse physiological processes, including immune 
responses, inflammatory reactions, cellular proliferation, 
differentiation, and apoptosis.

We identified the expansion and contraction in the 
goose genome in a previous study [13]. A total of 48 
genes were identified within 839 expanded gene families. 
Notably, we uncovered the existence of FAS, ABCA5, and 
BMP1. Additionally, among the 52 positively selected 
genes, eight displayed significant variations in RPS, 
including a significant increase in GCH1 and NPY5R. In 
conclusion, both the expansion and positive selection 
of genes are poised to play pivotal roles in the adaptive 
mechanisms of liver metabolism, especially compared to 
other avian species.

Discussion
The goose supplied an ideal animal model for liver disease
In this study, the goose liver tissues subjected to an HFD 
displayed metabolic dysfunction with significant pheno-
typic variation with increased body weight, liver weight, 
liver index, and liver tissue TG content compared to 
HFD-induced mice manifesting evident metabolic dys-
function, which suggests that domestic geese might pos-
sess resilience against NAFLD and HCC, even in the 
presence of obesity, potentially establishing them as a 
valuable animal model for human liver disease. To inves-
tigate the unique genetic characteristics of goose liver tis-
sues, we thoroughly examined multi-omics data (Hi-C, 
H3K27ac-ChIP-Seq, and RNA-Seq) from goose liver tis-
sues induced by an HFD to explore the unique protective 
mechanism in response to HFD.

This goose fatty liver induced by HFD is similar to 
the pathogenesis of NAFLD [2, 45, 46]. Animal models 
of NAFLD are predominantly established using high-
fat dietary feeding, pharmacological intervention, and 
genetic modification. These models encompass a diverse 

range of mammals, spanning monkeys [47], mice [48], 
rats [49], pigs [50], rabbits [51], and geese [46], with each 
model offering distinct advantages and holding specific 
applicability. The goose HFD liver is significantly yellow 
compared to the dark red liver of the normal-diet group, 
and lipid droplet deposition has previously been reported 
in goose livers [52, 53]. Previous studies conducted in our 
lab or by other researchers have demonstrated that HFD 
leads to a significant increase in the concentrations of 
CHOL, ALT, AST, GGT, TG, and HDL in goose plasma, 
as well as an overall increase in total lipid content com-
pared to normal liver tissue [53, 54]. Similar to the goose, 
the mouse was also led to obesity but with an inflamma-
tion physiological state by the HFD, which was not suf-
ficient for triggering hepatic ERS or NAFLD. The unique 
lipid metabolism mechanism in geese, enabling efficient 
fat accumulation in the liver and positioning them as an 
ideal model for studying non-alcoholic fatty liver disease 
(NAFLD), not only enhances our understanding of lipid 
metabolism but also reveals protective responses to over-
feeding, offering novel strategies for increasing goose 
fatty liver production and preventing fatty liver disease in 
other species [5, 6]. Moreover, the physiological capabil-
ity of significant post-overfeeding enlargement in goose 
fatty liver without evident pathological symptoms indi-
cates the presence of protective mechanisms, making it 
a distinct model for fatty liver research and promising 
innovative approaches to enhance goose fatty liver pro-
duction and avert fatty liver disease across various spe-
cies [45, 46].

Chromatin and transcriptomic changes triggered by HFD 
in goose liver tissues
Overall, our findings illustrate that alterations in gene 
expression in goose liver tissues align with changes 
in the A/B Compartments, TADs, or PEIs, suggesting 
that the 3D genome architecture structure (Compart-
ments, TADs, or PEIs) plays a relatively conserved 
role in gene regulation. In the transcriptional land-
scape, consistent with previous research in our lab 
[14], the up-regulated differentially expressed genes 
(DEGs) are implicated in energy production, con-
sumption, and metabolic pathways. Conversely, the 
down-regulated DEGs are linked to pathways associ-
ated with cancer or immune responses, in alignment 
with previous findings, such as SCD1, ELOV2, FADS1, 
FADS2 [55], and BMP6 [56]. Based on prior research 
[13, 14], we upgraded the goose genome sequence and 
incorporated six new RNA sequencing datasets out of 
ten, enhancing both the quality of our RNA sequenc-
ing data and the robustness of our identification 
methodology.
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Metabolic adaptations in goose liver to HFD: insights 
from 3D genomic structure
The HFD induces lipid deposition in goose fatty tis-
sue due to an imbalance where triglyceride TG produc-
tion surpasses apolipoprotein transport capacity, and 
fatty acid overproduction exceeds β-oxidation [57]. 
In this study, the HFD induced the key genes with sig-
nificantly different RPS values and enhancer numbers 
by being involved in the synthesis of long fatty acid 
metabolism. For instance, FASN is crucial in converting 
glucose into lipids, serving as a central determinant for 
the hepatic capacity to synthesize fatty acids and func-
tioning as a key regulator in hepatic de novo lipogen-
esis [58], which is regarded as a promising therapeutic 
target for both NAFLD and HCC [59, 60]. Mouse with 
liver-specific FASN knockout exhibited hypoglycemia 
and fatty liver, both of which were ameliorated upon 
the introduction of a dietary fat regimen [61]. In cross-
species research, FASN exhibits distinct 3D expression 
regulation in mouse and goose genomes. Consequently, 
this may be one of the contributing factors to the distinc-
tive lipid metabolism characteristics observed in goose 
liver tissue. Moreover, FADS1 and FADS2 are two rate-
controlling enzymes in de novo fatty acid synthesis and 
TG metabolism, and the two genes are potential targets 
therapeutic targets for NAFLD disease [62, 63], serving 
as pivotal fatty acid desaturases in the process of de novo 
lipogenesis and ensuing steatosis within goose liver [64]. 
The knockdown of FADS1 in the HepG2 cell line resulted 
in a notable reduction in cellular levels of LC-PUFAs. 
Concurrently, it induced an elevation in lipid accumu-
lation and the formation of lipid droplets, accompanied 
by significant modifications in diverse pathways associ-
ated with lipid homeostasis. Furthermore, it remarkably 
impacted fatty acid oxidation [65]. Similarly, in FASD2 
knockout (FADS2-/-) mice, hepatic triacylglycerol and 
cholesterol accumulation are significantly exacerbated 
when exposed to a diet deficient in polyunsaturated fatty 
acids [66]. HSD17B12 (17-beta-hydroxysteroid dehy-
drogenase type 12) plays a pivotal role in the synthesis 
of very-long-chain fatty acids, elongation of long-chain 
fatty acids, as well as lipid metabolism and metabolic 
homeostasis in the liver [67]. Mice lacking HSD17B12 
exhibit fatal systemic inflammation and lipolysis, 
decreased numbers and sizes of lipid droplets, microste-
atosis, and increased TG accumulation [68], making it a 
potential target for NAFLD [69]. OGDH, as one of the 
rate-limiting enzymes in the TCA, plays a pivotal role 
by catalyzing an irreversible process within this meta-
bolic pathway [70], which is linked to conditions such 
as developmental delays, hypotonia, movement disor-
ders, metabolic disturbances, obesity, and diabetes [71]. 
A previous study demonstrated that OGDH silencing 

accelerates HCC progression via glutamine metabolism 
reprogramming, highlighting OGDH as a promising bio-
marker and therapeutic target for HCC [72].

TADs are stable in the goose or mouse genome induced 
by an HFD
At the TAD level, we updated the analysis pipeline and 
identified more TAD structures (number: 1,894; size: 
461  kb) in goose and mouse liver tissues than those 
identified in the previous study by our lab [13], and the 
TAD structures are consistent with those in the chicken 
and pig genomes [19, 22]. A previous study showed that 
TADs are stably induced by HFD in mice [27]; we iden-
tified that the switch TAD boundaries between the two 
groups exhibited limited annotation of prominent genes. 
Moreover, a majority of the annotated genes were pre-
dicted or anticipated, with limited existing research. 
Notably, goose and mouse liver tissues demonstrated 
a stable and ordered genome TAD chromosome archi-
tecture, which remained unaffected by the HFD. Inter-
estingly, in goose liver tissue, dynamic TAD boundaries 
showed a gain in GK and a loss in PRODH in response 
to an HFD. PRODH, located on the inner mitochondrial 
membrane, is crucial for proline metabolism and energy 
synthesis in proline metabolism, energy synthesis, and 
stress response [73, 74]. Moreover, PRODH signifi-
cantly impacts cancer progression through its dual role 
in ATP production and ROS generation, acting as both 
a tumor suppressor and oncogene, making it a critical 
therapeutic target for HCC [75, 76]. The GK gene, cru-
cial for glycerol metabolism, produces glycerol kinase 
that transforms glycerol into glycerol-3-phosphate, a 
key process underpinning triglyceride backbone forma-
tion and is essential for energy production, glycerolipid 
synthesis, regulation of energy, lipid composition, and 
signal transduction [77]. Disruptions in the GK gene 
can lead to metabolic disturbances, emphasizing its 
critical importance in health preservation and disease 
intervention. In the context of liver cancer, changes in 
GK activity can be detected at the disease’s early stages 
and continue throughout its advancement, which sug-
gests that the GK gene is a potential therapeutic target 
in developing treatments for HCC [78, 79]. In conclu-
sion, our study demonstrates the stability of TADs in the 
goose liver genomes induced by an HFD, except for the 
two genes PRODH and GK, which have the potential as a 
therapeutic target for HCC.

Conclusions
In this study, geese exhibited significantly more sig-
nificant alterations in liver index and TG content in 
response to an HFD than mice, without marked signs 
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of inflammation. Our study elucidates how the dynamic 
three-dimensional chromatin architecture triggered by 
an HFD, which regulates genes that share homology with 
those in mice, plays crucial roles in lipid metabolism and 
is associated with liver diseases, NAFLD, or HCC. Inves-
tigating the dynamic three-dimensional chromatin struc-
ture in geese enhances our comprehension of the goose’s 
distinctive lipid metabolic and pathological adaptations.
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